MRI-based radiomics for prognosis of pediatric diffuse intrinsic pontine glioma: an international study

被引:32
作者
Tam, Lydia T. [1 ,2 ]
Yeom, Kristen W. [1 ,2 ]
Wright, Jason N. [4 ,5 ]
Jaju, Alok [6 ]
Radmanesh, Alireza [7 ]
Han, Michelle [1 ,2 ]
Toescu, Sebastian [8 ]
Maleki, Maryam [3 ]
Chen, Eric [9 ,10 ]
Campion, Andrew [2 ]
Lai, Hollie A. [11 ,12 ]
Eghbal, Azam A. [11 ,12 ]
Oztekin, Ozgur [13 ,14 ]
Mankad, Kshitij [8 ,15 ]
Hargrave, Darren [8 ]
Jacques, Thomas S. [8 ]
Goetti, Robert [16 ]
Lober, Robert M. [17 ]
Cheshier, Samuel H. [18 ]
Napel, Sandy [19 ]
Said, Mourad [20 ]
Aquilina, Kristian [8 ]
Ho, Chang Y. [9 ,10 ]
Monje, Michelle [1 ,21 ]
Vitanza, Nicholas A. [22 ,23 ]
Mattonen, Sarah A. [24 ,25 ]
机构
[1] Stanford Univ, Sch Med, Stanford, CA 94305 USA
[2] Stanford Univ, Sch Med, Lucile Packard Childrens Hosp, Dept Radiol, Stanford, CA 94305 USA
[3] Univ Pittsburgh, Med Ctr, Dept Radiol, Pittsburgh, PA USA
[4] Seattle Childrens Hosp, Dept Radiol, Seattle, WA USA
[5] Harborview Med Ctr, Seattle, WA USA
[6] Ann & Robert H Lurie Childrens Hosp Chicago, Dept Med Imaging, Chicago, IL 60611 USA
[7] NYU, Dept Radiol, Grossman Sch Med, 560 1St Ave, New York, NY 10016 USA
[8] UCL, Great Ormond St Inst Child Hlth, London, England
[9] Indiana Univ, Riley Childrens Hosp, Dept Clin Radiol, Indianapolis, IN 46204 USA
[10] Indiana Univ, Riley Childrens Hosp, Dept Imaging Sci, Indianapolis, IN 46204 USA
[11] CHOC Childrens Hosp, Dept Radiol, Orange, CA USA
[12] Univ Calif Irvine, Irvine, CA USA
[13] Bakircay Univ, Cigli Educ & Res Hosp, Dept Neuroradiol, Izmir, Turkey
[14] Hlth Sci Univ, Tepecik Educ & Res Hosp, Dept Neuroradiol, Izmir, Turkey
[15] Great Ormond St Hosp Sick Children, Dept Radiol, London, England
[16] Univ Sydney, Childrens Hosp Westmead, Dept Med Imaging, Westmead, NSW, Australia
[17] Wright State Univ, Dayton Childrens Hosp, Boonshoft Sch Med, Dept Neurosurg, Dayton, OH 45435 USA
[18] Univ Utah, Sch Med, Dept Neurosurg, Salt Lake City, UT USA
[19] Stanford Univ, Dept Radiol, Stanford, CA 94305 USA
[20] Ctr Int Carthage Med, Dept Radiol, Monastir, Tunisia
[21] Stanford Univ, Dept Neurol & Neurol Sci, Stanford, CA 94305 USA
[22] Seattle Childrens Hosp, Dept Pediat, Div Pediat Hematol Oncol, 4800 Sand Point Way NE, Seattle, WA 98105 USA
[23] Seattle Childrens Res Inst, Ben Towne Ctr Childhood Canc Res, Seattle, WA 98101 USA
[24] Western Univ, Dept Med Biophys, London, ON, Canada
[25] Western Univ, Dept Oncol, London, ON, Canada
关键词
diffuse intrinsic pontine gliomas; diffuse midline glioma; H3K27M-mutant; machine learning; magnetic resonance imaging; radiomics; IMAGING RADIOMICS; HIGH-GRADE; SURVIVAL; TUMORS; SUBGROUPS; FEATURES; SYSTEM; DIPG;
D O I
10.1093/noajnl/vdab042
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background. Diffuse intrinsic pontine gliomas (DIPGs) are lethal pediatric brain tumors. Presently, MRI is the mainstay of disease diagnosis and surveillance. We identify clinically significant computational features from MRI and create a prognostic machine learning model. Methods. We isolated tumor volumes of T1-post-contrast (T1) andT2-weighted (T2) MRIs from 177 treatment-naive DIPG patients from an international cohort for model training and testing. The Quantitative Image Feature Pipeline and PyRadiomics was used for feature extraction. Ten-fold cross-validation of least absolute shrinkage and selection operator Cox regression selected optimal features to predict overall survival in the training dataset and tested in the independent testing dataset. We analyzed model performance using clinical variables (age at diagnosis and sex) only, radiomics only, and radiomics plus clinical variables. Results. All selected features were intensity and texture-based on the wavelet-filtered images (3 T1 graylevel co-occurrence matrix (GLCM) texture features, T2 GLCM texture feature, and T2 first-order mean). This multivariable Cox model demonstrated a concordance of 0.68 (95% CI: 0.61-0.74) in the training dataset, significantly outperforming the clinical-only model (C = 0.57 [95% CI: 0.49-0.64]). Adding clinical features to radiomics slightly improved performance (C = 0.70 [95% CI: 0.64-0.77]). The combined radiomics and clinical model was validated in the independent testing dataset (C = 0.59 [95% CI: 0.51-0.67], Noether's test P =.02). Conclusions. In this international study, we demonstrate the use of radiomic signatures to create a machine learning model for DIPG prognostication. Standardized, quantitative approaches that objectively measure DIPG changes, including computational MRI evaluation, could offer new approaches to assessing tumor phenotype and serve a future role for optimizing clinical trial eligibility and tumor surveillance.
引用
收藏
页数:9
相关论文
共 52 条
[1]   Diffuse intrinsic pontine glioma: molecular landscape and emerging therapeutic targets [J].
Aziz-Bose, Razina ;
Monje, Michelle .
CURRENT OPINION IN ONCOLOGY, 2019, 31 (06) :522-530
[2]   Pitfalls in the radiological response assessment of immunotherapy [J].
Beer L. ;
Hochmair M. ;
Prosch H. .
memo - Magazine of European Medical Oncology, 2018, 11 (2) :138-143
[3]   Histone H3F3A and HIST1H3B K27M mutations define two subgroups of diffuse intrinsic pontine gliomas with different prognosis and phenotypes [J].
Castel, David ;
Philippe, Cathy ;
Calmon, Raphael ;
Le Dret, Ludivine ;
Truffaux, Nathalene ;
Boddaert, Nathalie ;
Pages, Melanie ;
Taylor, Kathryn R. ;
Saulnier, Patrick ;
Lacroix, Ludovic ;
Mackay, Alan ;
Jones, Chris ;
Sainte-Rose, Christian ;
Blauwblomme, Thomas ;
Andreiuolo, Felipe ;
Puget, Stephanie ;
Grill, Jacques ;
Varlet, Pascale ;
Debily, Marie-Anne .
ACTA NEUROPATHOLOGICA, 2015, 130 (06) :815-827
[4]   Children with DIPG and high-grade glioma treated with temozolomide, irinotecan, and bevacizumab: the Seattle Children's Hospital experience [J].
Crotty, Erin E. ;
Leary, Sarah E. S. ;
Geyer, J. Russell ;
Olson, James M. ;
Millard, Nathan E. ;
Sato, Aimee A. ;
Ermoian, Ralph P. ;
Cole, Bonnie L. ;
Lockwood, Christina M. ;
Paulson, Vera A. ;
Browd, Samuel R. ;
Ellenbogen, Richard G. ;
Hauptman, Jason S. ;
Lee, Amy ;
Ojemann, Jeffrey G. ;
Vitanza, Nicholas A. .
JOURNAL OF NEURO-ONCOLOGY, 2020, 148 (03) :607-617
[5]   Hyperprogressive Disease in Patients With Advanced Non-Small Cell Lung Cancer Treated With PD-1/PD-L1 Inhibitors or With Single-Agent Chemotherapy [J].
Ferrara, Roberto ;
Mezquita, Laura ;
Texier, Matthieu ;
Lahmar, Jihene ;
Audigier-Valette, Clarisse ;
Tessonnier, Laurent ;
Mazieres, Julien ;
Zalcman, Gerard ;
Brosseau, Solenn ;
Le Moulec, Sylvestre ;
Leroy, Laura ;
Duchemann, Boris ;
Lefebvre, Corentin ;
Veillon, Remi ;
Westeel, Virginie ;
Koscielny, Serge ;
Champiat, Stephane ;
Ferte, Charles ;
Planchard, David ;
Remon, Jordi ;
Boucher, Marie-Eve ;
Gazzah, Anas ;
Adam, Julien ;
Bria, Emilio ;
Tortora, Giampaolo ;
Soria, Jean-Charles ;
Besse, Benjamin ;
Caramella, Caroline .
JAMA ONCOLOGY, 2018, 4 (11) :1543-1552
[6]   Radiomics in paediatric neuro-oncology: A multicentre study on MRI texture analysis [J].
Fetit, Ahmed E. ;
Novak, Jan ;
Rodriguez, Daniel ;
Auer, Dorothee P. ;
Clark, Christopher A. ;
Grundy, Richard G. ;
Peet, Andrew C. ;
Arvanitis, Theodoros N. .
NMR IN BIOMEDICINE, 2018, 31 (01)
[7]   Regularization Paths for Generalized Linear Models via Coordinate Descent [J].
Friedman, Jerome ;
Hastie, Trevor ;
Tibshirani, Rob .
JOURNAL OF STATISTICAL SOFTWARE, 2010, 33 (01) :1-22
[8]   Glioblastoma Multiforme: Exploratory Radiogenomic Analysis by Using Quantitative Image Features [J].
Gevaert, Olivier ;
Mitchell, Lex A. ;
Achrol, Achal S. ;
Xu, Jiajing ;
Echegaray, Sebastian ;
Steinberg, Gary K. ;
Cheshier, Samuel H. ;
Napel, Sandy ;
Zaharchuk, Greg ;
Plevritis, Sylvia K. .
RADIOLOGY, 2014, 273 (01) :168-174
[9]   Non-Small Cell Lung Cancer: Identifying Prognostic Imaging Biomarkers by Leveraging Public Gene Expression Microarray Data-Methods and Preliminary Results [J].
Gevaert, Olivier ;
Xu, Jiajing ;
Hoang, Chuong D. ;
Leung, Ann N. ;
Xu, Yue ;
Quon, Andrew ;
Rubin, Daniel L. ;
Napel, Sandy ;
Plevritis, Sylvia K. .
RADIOLOGY, 2012, 264 (02) :387-396
[10]   Chemotherapy for Malignant Brain Tumors of Childhood [J].
Gottardo, Nicholas G. ;
Gajjar, Amar .
JOURNAL OF CHILD NEUROLOGY, 2008, 23 (10) :1149-1159