Quasi-Static Hydrodynamic Limits

被引:17
作者
De Masi, Anna [1 ]
Olla, Stefano [2 ]
机构
[1] Univ Aquila, I-67100 Laquila, Italy
[2] Univ Paris 09, UMR CNRS 7534, CEREMADE, F-75775 Paris 16, France
关键词
Quasi-static thermodynamic; Hydrodynamic limits; Clausius equality;
D O I
10.1007/s10955-015-1383-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider hydrodynamic limits of interacting particles systems with open boundaries, where the exterior parameters change in a time scale slower than the typical relaxation time scale. The limit deterministic profiles evolve quasi-statically. These limits define rigorously the thermodynamic quasi static transformations also for transitions between non-equilibrium stationary states. We study first the case of the symmetric simple exclusion, where duality can be used, and then we use relative entropy methods to extend to other models like zero range systems. Finally we consider a chain of anharmonic oscillators in contact with a thermal Langevin bath with a temperature gradient and a slowly varying tension applied to one end.
引用
收藏
页码:1037 / 1058
页数:22
相关论文
共 16 条
  • [1] Clausius Inequality and Optimality of Quasistatic Transformations for Nonequilibrium Stationary States
    Bertini, L.
    Gabrielli, D.
    Jona-Lasinio, G.
    Landim, C.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 110 (02)
  • [2] Thermodynamic Transformations of Nonequilibrium States
    Bertini, Lorenzo
    Gabrielli, Davide
    Jona-Lasinio, Giovanni
    Landim, Claudio
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2012, 149 (05) : 773 - 802
  • [3] Callen H. B., 1985, THERMODYNAMICS INTRO
  • [4] Truncated correlations in the stirring process with births and deaths
    De Masi, Anna
    Presutti, Errico
    Tsagkarogiannis, Dimitrios
    Vares, Maria E.
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2012, 17 : 1 - 35
  • [5] A REMARK ON THE HYDRODYNAMICS OF THE ZERO-RANGE PROCESSES
    DEMASI, A
    FERRARI, P
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1984, 36 (1-2) : 81 - 87
  • [6] DEMASI A, 1991, LECT NOTES MATH, V1501, P1
  • [7] HYDRODYNAMICS OF STATIONARY NONEQUILIBRIUM STATES FOR SOME STOCHASTIC LATTICE GAS MODELS
    EYINK, G
    LEBOWITZ, JL
    SPOHN, H
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 132 (01) : 253 - 283
  • [8] NON-EQUILIBRIUM MEASURES WHICH EXHIBIT A TEMPERATURE-GRADIENT - STUDY OF A MODEL
    GALVES, A
    KIPNIS, C
    MARCHIORO, C
    PRESUTTI, E
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1981, 81 (01) : 127 - 147
  • [9] NONLINEAR DIFFUSION LIMIT FOR A SYSTEM WITH NEAREST NEIGHBOR INTERACTIONS
    GUO, MZ
    PAPANICOLAOU, GC
    VARADHAN, SRS
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 118 (01) : 31 - 59
  • [10] HYDRODYNAMICS AND LARGE DEVIATION FOR SIMPLE EXCLUSION PROCESSES
    KIPNIS, C
    OLLA, S
    VARADHAN, SRS
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (02) : 115 - 137