Lozenge Tilings and Hurwitz Numbers

被引:17
作者
Novak, Jonathan [1 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
关键词
Random tilings; Random matrices; Hurwitz numbers; ASYMPTOTICS;
D O I
10.1007/s10955-015-1330-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We give a new proof of the fact that, near a turning point of the frozen boundary, the vertical tiles in a uniformly random lozenge tiling of a large sawtooth domain are distributed like the eigenvalues of a GUE random matrix. Our argument uses none of the standard tools of integrable probability. In their place, it uses a combinatorial interpretation of the Harish-Chandra/Itzykson-Zuber integral as a generating function for desymmetrized Hurwitz numbers.
引用
收藏
页码:509 / 517
页数:9
相关论文
共 23 条
  • [1] The spectrum of coupled random matrices
    Adler, M
    Van Moerbeke, P
    [J]. ANNALS OF MATHEMATICS, 1999, 149 (03) : 921 - 976
  • [2] Biane P, 2002, ELECTRON J COMB, V9
  • [3] New scaling of Itzykson-Zuber integrals
    Collins, Benoit
    Sniady, Piotr
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2007, 43 (02): : 139 - 146
  • [4] Duse E., ARXIV14126653V1
  • [5] Goodman R, 2009, GRAD TEXTS MATH, V255, P1, DOI 10.1007/978-0-387-79852-3_1
  • [6] Gorin V., ARXIV13010634V4
  • [7] Goulden I. P., 2014, Ann. Math. Blaise Pascal, V21, P71, DOI DOI 10.5802/AMBP.336
  • [8] Towards the geometry of double Hurwitz numbers
    Goulden, IP
    Jackson, DM
    Vakil, R
    [J]. ADVANCES IN MATHEMATICS, 2005, 198 (01) : 43 - 92
  • [9] A Fourier view on the R-transform and related asymptotics of spherical integrals
    Guionnet, A
    Maïda, M
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 222 (02) : 435 - 490
  • [10] DIFFERENTIAL OPERATORS ON A SEMISIMPLE LIE ALGEBRA
    HARISHCHANDRA
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 1957, 79 (01) : 87 - 120