Integrating ChIP-seq with other functional genomics data

被引:44
作者
Jiang, Shan [1 ]
Mortazavi, Ali [1 ]
机构
[1] Univ Calif Irvine, Dept Dev & Cell Biol, 2300 Biol Sci 3, Irvine, CA 92697 USA
关键词
chip-seq; integrative analysis; chromatin states; self-organizing maps; hidden Markov models; TRANSCRIPTION FACTOR-BINDING; FORMALDEHYDE-ASSISTED ISOLATION; LONG-RANGE INTERACTIONS; CHROMATIN ACCESSIBILITY; GENE-EXPRESSION; DNA-BINDING; REGULATORY ELEMENTS; SYSTEMATIC ANNOTATION; HISTONE MODIFICATIONS; TOPOLOGICAL DOMAINS;
D O I
10.1093/bfgp/ely002
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Transcription is regulated by transcription factor (TF) binding at promoters and distal regulatory elements and histone modifications that control the accessibility of these elements. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) has become the standard assay for identifying genome-wide protein-DNA interactions in vitro and in vivo. As large-scale ChIP-seq data sets have been collected for different TFs and histone modifications, their potential to predict gene expression can be used to test hypotheses about the mechanisms of gene regulation. In addition, complementary functional genomics assays provide a global view of chromatin accessibility and long-range cis-regulatory interactions that are being combined with TF binding and histone remodeling to study the regulation of gene expression. Thus, ChIP-seq analysis is now widely integrated with other functional genomics assays to better understand gene regulatory mechanisms. In this review, we discuss advances and challenges in integrating ChIP-seq data to identify context-specific chromatin states associated with gene activity. We describe the overall computational design of integrating ChIP-seq data with other functional genomics assays. We also discuss the challenges of extending these methods to low-input ChIP-seq assays and related single-cell assays.
引用
收藏
页码:104 / 115
页数:12
相关论文
共 167 条
[1]   Whole-genome chromatin profiling from limited numbers of cells using nano-ChIP-seq [J].
Adli, Mazhar ;
Bernstein, Bradley E. .
NATURE PROTOCOLS, 2011, 6 (10) :1656-1668
[2]   The β-globin promoter-71 C>T mutation is a β plus thalassemic allele [J].
Al Zadjali, Shoaib ;
Wali, Yasser ;
Al Lawatiya, Fatma ;
Gravell, David ;
AlKindi, Salam ;
Al Falahi, Kareema ;
Krishnamoorthy, Rajagopal ;
Daar, Shahina .
EUROPEAN JOURNAL OF HAEMATOLOGY, 2011, 87 (05) :457-460
[3]   GeneTrack - a genomic data processing and visualization framework [J].
Albert, Istvan ;
Wachi, Shinichiro ;
Jiang, Cizhong ;
Pugh, Franklin .
BIOINFORMATICS, 2008, 24 (10) :1305-1306
[4]   Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning [J].
Alipanahi, Babak ;
Delong, Andrew ;
Weirauch, Matthew T. ;
Frey, Brendan J. .
NATURE BIOTECHNOLOGY, 2015, 33 (08) :831-+
[5]   A global reference for human genetic variation [J].
Altshuler, David M. ;
Durbin, Richard M. ;
Abecasis, Goncalo R. ;
Bentley, David R. ;
Chakravarti, Aravinda ;
Clark, Andrew G. ;
Donnelly, Peter ;
Eichler, Evan E. ;
Flicek, Paul ;
Gabriel, Stacey B. ;
Gibbs, Richard A. ;
Green, Eric D. ;
Hurles, Matthew E. ;
Knoppers, Bartha M. ;
Korbel, Jan O. ;
Lander, Eric S. ;
Lee, Charles ;
Lehrach, Hans ;
Mardis, Elaine R. ;
Marth, Gabor T. ;
McVean, Gil A. ;
Nickerson, Deborah A. ;
Wang, Jun ;
Wilson, Richard K. ;
Boerwinkle, Eric ;
Doddapaneni, Harsha ;
Han, Yi ;
Korchina, Viktoriya ;
Kovar, Christie ;
Lee, Sandra ;
Muzny, Donna ;
Reid, Jeffrey G. ;
Zhu, Yiming ;
Chang, Yuqi ;
Feng, Qiang ;
Fang, Xiaodong ;
Guo, Xiaosen ;
Jian, Min ;
Jiang, Hui ;
Jin, Xin ;
Lan, Tianming ;
Li, Guoqing ;
Li, Jingxiang ;
Li, Yingrui ;
Liu, Shengmao ;
Liu, Xiao ;
Lu, Yao ;
Ma, Xuedi ;
Tang, Meifang ;
Wang, Bo .
NATURE, 2015, 526 (7571) :68-+
[6]   In silico detection of sequence variations modifying transcriptional regulation [J].
Andersen, Malin C. ;
Engstrom, Par R. G. ;
Lithwick, Stuart ;
Arenillas, David ;
Eriksson, Per ;
Lenhard, Boris ;
Wasserman, Wyeth W. ;
Odeberg, Jacob .
PLOS COMPUTATIONAL BIOLOGY, 2008, 4 (01) :0043-0054
[7]   Understanding gene regulatory mechanisms by integrating ChIP-seq and RNA-seq data: statistical solutions to biological problems [J].
Angelini, Claudia ;
Costa, Valerio .
FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2014, 2
[8]   Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity [J].
Angermueller, Christof ;
Clark, Stephen J. ;
Lee, Heather J. ;
Macaulay, Iain C. ;
Teng, Mabel J. ;
Hu, Tim Xiaoming ;
Krueger, Felix ;
Smallwood, Sebastien A. ;
Ponting, Chris P. ;
Voet, Thierry ;
Kelsey, Gavin ;
Stegle, Oliver ;
Reik, Wolf .
NATURE METHODS, 2016, 13 (03) :229-+
[9]   High-resolution profiling of histone methylations in the human genome [J].
Barski, Artern ;
Cuddapah, Suresh ;
Cui, Kairong ;
Roh, Tae-Young ;
Schones, Dustin E. ;
Wang, Zhibin ;
Wei, Gang ;
Chepelev, Iouri ;
Zhao, Keji .
CELL, 2007, 129 (04) :823-837
[10]   YY1 and CTCF orchestrate a 3D chromatin looping switch during early neural lineage commitment [J].
Beagan, Jonathan A. ;
Duong, Michael T. ;
Titus, Katelyn R. ;
Zhou, Linda ;
Cao, Zhendong ;
Ma, Jingjing ;
Lachanski, Caroline V. ;
Gillis, Daniel R. ;
Phillips-Cremins, Jennifer E. .
GENOME RESEARCH, 2017, 27 (07) :1139-1152