Darboux transformation of the generalized coupled dispersionless integrable system

被引:55
作者
Hassan, M. [1 ,2 ]
机构
[1] Univ Glasgow, Dept Math, Glasgow G12 8QW, Lanark, Scotland
[2] Univ Punjab, Dept Phys, Lahore 54590, Pakistan
关键词
SOLITON-SOLUTIONS; EQUATIONS; HIERARCHIES;
D O I
10.1088/1751-8113/42/6/065203
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Darboux transformation on matrix solutions to the generalized coupled dispersionless integrable system based on a non-Abelian Lie group is studied, and the solutions are shown to be expressed in terms of quasideterminants. As an explicit example, the Darboux transformation on scalar solutions to the system based on the Lie group SU(2) is discussed in detail, and the solutions are shown to be expressed as ratios of determinants.
引用
收藏
页数:11
相关论文
共 28 条
[1]   Singularity structure analysis and Hirota's bilinearisation of the coupled integrable dispersionless equations [J].
Alagesan, T ;
Porsezian, K .
CHAOS SOLITONS & FRACTALS, 1997, 8 (10) :1645-1650
[2]   Backlund transformation and soliton solutions for the coupled dispersionless equations [J].
Alagesan, T ;
Chung, Y ;
Nakkeeran, K .
CHAOS SOLITONS & FRACTALS, 2004, 21 (01) :63-67
[3]   Painleve analysis and the integrability properties of coupled integrable dispersionless equations [J].
Alagesan, T ;
Porsezian, K .
CHAOS SOLITONS & FRACTALS, 1996, 7 (08) :1209-1212
[4]  
[Anonymous], 1992, FUNKC ANAL PRILOZH
[5]   TOPOLOGICAL CONFORMAL FIELD-THEORY WITH A RATIONAL W POTENTIAL AND THE DISPERSIONLESS KP HIERARCHY [J].
AOYAMA, S ;
KODAMA, Y .
MODERN PHYSICS LETTERS A, 1994, 9 (27) :2481-2492
[6]   SOLUTION OF THE DISPERSIONLESS HIROTA EQUATIONS [J].
CARROLL, R ;
KODAMA, Y .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (22) :6373-6387
[7]   Soliton solutions of the coupled dispersionless equation [J].
Chen, Aihua ;
Li, Xuemei .
PHYSICS LETTERS A, 2007, 370 (3-4) :281-286
[8]  
CIESLINSKI J, 1995, J MATH PHYS, V36, P5670, DOI 10.1063/1.531282
[9]   An interpolating dispersionless integrable system [J].
Dunajski, Maciej .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (31)
[10]   Quasideterminants [J].
Gelfand, I ;
Gelfand, S ;
Retakh, V ;
Wilson, RL .
ADVANCES IN MATHEMATICS, 2005, 193 (01) :56-141