L1-NORM HIGHER-ORDER ORTHOGONAL ITERATIONS FOR ROBUST TENSOR ANALYSIS

被引:0
作者
Chachlakis, Dimitris G. [1 ]
Prater-Bennette, Ashley [2 ]
Markopoulos, Panos P. [1 ]
机构
[1] Rochester Inst Technol, Dept Elect & Microelect Engn, Rochester, NY 14623 USA
[2] Air Force Res Lab, Rome, NY 13441 USA
来源
2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING | 2020年
基金
美国国家科学基金会;
关键词
D O I
10.1109/icassp40776.2020.9053701
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Standard Tucker tensor decomposition seeks to maximize the L2-norm of the compressed tensor; thus, it is very responsive to outlying/high-magnitude entries among the processed data. To counteract the impact of outliers in tensor data analysis, we propose L1-Tucker: a reformulation of standard Tucker decomposition, resulting by simple substitution of the outlier-responsive L2-norm by the sturdier L1-norm. Then, we propose the L1-norm Higher Order Orthogonal Iterations (L1-HOOI) algorithm for the approximate solution to L1-Tucker. Our numerical studies on data reconstruction and classification corroborate that L1-HOOI exhibits sturdy resistance against outliers compared to standard counterparts.
引用
收藏
页码:4826 / 4830
页数:5
相关论文
共 28 条
[11]  
Golub G H., 2013, Matrix Computations, V4th edition
[12]  
Gower J.C., 2004, Procrustes problems
[13]   Tensor Decompositions and Applications [J].
Kolda, Tamara G. ;
Bader, Brett W. .
SIAM REVIEW, 2009, 51 (03) :455-500
[14]   Compressed-Sensed-Domain L1-PCA Video Surveillance [J].
Liu, Ying ;
Pados, Dimitris A. .
IEEE TRANSACTIONS ON MULTIMEDIA, 2016, 18 (03) :351-363
[15]   Tensor Robust Principal Component Analysis: Exact Recovery of Corrupted Low-Rank Tensors via Convex Optimization [J].
Lu, Canyi ;
Feng, Jiashi ;
Chen, Yudong ;
Liu, Wei ;
Lin, Zhouchen ;
Yan, Shuicheng .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :5249-5257
[16]  
Markopoulos PP, 2018, IEEE GLOB CONF SIG, P1353, DOI 10.1109/GlobalSIP.2018.8646385
[17]   The Exact Solution to Rank-1 L1-Norm TUCKER2 Decomposition [J].
Markopoulos, Panos P. ;
Chachlakis, Dimitris G. ;
Papalexakis, Evangelos E. .
IEEE SIGNAL PROCESSING LETTERS, 2018, 25 (04) :511-515
[18]   Efficient L1-Norm Principal-Component Analysis via Bit Flipping [J].
Markopoulos, Panos P. ;
Kundu, Sandipan ;
Chamadia, Shubham ;
Pados, Dimitris A. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (16) :4252-4264
[19]  
Markopoulos PP, 2017, IEEE RAD CONF, P1807, DOI 10.1109/RADAR.2017.7944501
[20]  
Markopoulos PP, 2015, IEEE IMAGE PROC, P1225, DOI 10.1109/ICIP.2015.7350995