L1-NORM HIGHER-ORDER ORTHOGONAL ITERATIONS FOR ROBUST TENSOR ANALYSIS

被引:0
作者
Chachlakis, Dimitris G. [1 ]
Prater-Bennette, Ashley [2 ]
Markopoulos, Panos P. [1 ]
机构
[1] Rochester Inst Technol, Dept Elect & Microelect Engn, Rochester, NY 14623 USA
[2] Air Force Res Lab, Rome, NY 13441 USA
来源
2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING | 2020年
基金
美国国家科学基金会;
关键词
D O I
10.1109/icassp40776.2020.9053701
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Standard Tucker tensor decomposition seeks to maximize the L2-norm of the compressed tensor; thus, it is very responsive to outlying/high-magnitude entries among the processed data. To counteract the impact of outliers in tensor data analysis, we propose L1-Tucker: a reformulation of standard Tucker decomposition, resulting by simple substitution of the outlier-responsive L2-norm by the sturdier L1-norm. Then, we propose the L1-norm Higher Order Orthogonal Iterations (L1-HOOI) algorithm for the approximate solution to L1-Tucker. Our numerical studies on data reconstruction and classification corroborate that L1-HOOI exhibits sturdy resistance against outliers compared to standard counterparts.
引用
收藏
页码:4826 / 4830
页数:5
相关论文
共 28 条
[1]   Tensor decompositions for feature extraction and classification of high dimensional datasets [J].
Anh Huy Phan ;
Ciehoeki, Andrzej .
IEICE NONLINEAR THEORY AND ITS APPLICATIONS, 2010, 1 (01) :37-68
[2]  
[Anonymous], 2011, P 22 INT JOINT C ART
[3]   Robust Face Clustering Via Tensor Decomposition [J].
Cao, Xiaochun ;
Wei, Xingxing ;
Han, Yahong ;
Lin, Dongdai .
IEEE TRANSACTIONS ON CYBERNETICS, 2015, 45 (11) :2546-2557
[4]  
Chachlakis D. G., 2018, P SPIE DEFENSE COMME
[5]  
Chachlakis D. G., 2019, P SPIE DEFENSE COMME
[6]  
Chachlakis DG, 2018, 2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), P6294, DOI 10.1109/ICASSP.2018.8461839
[7]   A multilinear singular value decomposition [J].
De Lathauwer, L ;
De Moor, B ;
Vandewalle, J .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (04) :1253-1278
[8]   Challenges of Big Data analysis [J].
Fan, Jianqing ;
Han, Fang ;
Liu, Han .
NATIONAL SCIENCE REVIEW, 2014, 1 (02) :293-314
[9]   Joint Tensor Factorization and Outlying Slab Suppression With Applications [J].
Fu, Xiao ;
Huang, Kejun ;
Ma, Wing-Kin ;
Sidiropoulos, Nicholas D. ;
Bro, Rasmus .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (23) :6315-6328
[10]   ROBUST LOW-RANK TENSOR RECOVERY: MODELS AND ALGORITHMS [J].
Goldfarb, Donald ;
Qin, Zhiwei .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2014, 35 (01) :225-253