Photoelectrochemical deposition of CoP on cuprous oxide photocathodes for solar hydrogen production

被引:20
作者
Stern, Lucas-Alexandre [1 ]
Liardet, Laurent [1 ]
Mayer, Matthew T. [2 ]
Morales-Guio, Carlos Gilberto [1 ]
Gratzel, Michael [2 ]
Hu, Xile [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Inst Chem Sci & Engn, Lab Inorgan Synth & Catalysis, ISIC LSCI, CH-1015 Lausanne, Switzerland
[2] Ecole Polytech Fed Lausanne, Inst Chem Sci & Engn, Lab Photon & Interfaces, ISIC LPI, CH-1015 Lausanne, Switzerland
关键词
Hydrogen evolution; Cobalt phosphide; Photoelectrochemistry; Cuprous oxide; ELECTROCHEMICAL SYNTHESIS; WATER REDUCTION; PERFORMANCE; EFFICIENT; EVOLUTION; ELECTROCATALYST; NANOPARTICLES; SILICON; CELLS;
D O I
10.1016/j.electacta.2017.03.074
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Photoelectrochemical (PEC) water splitting is an attractive and sustainable energy conversion method. In this work, cobalt phosphide (CoP) is photoelectrochemically deposited on a p-type cuprous oxide (pCu(2)O) photocathode for solar hydrogen production. Under visible light irradiation, the PEC assembly is active for hydrogen evolution, generating a current density of up to -5.3 mA cm(-2) and -4.2 mA cm(-2) in acidic and basic conditions at 0 V vs. the reversible hydrogen electrode (RHE). (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:311 / 316
页数:6
相关论文
共 19 条
[1]   Silicon nanowire arrays coupled with cobalt phosphide spheres as low-cost photocathodes for efficient solar hydrogen evolution [J].
Bao, Xiao-Qing ;
Cerqueira, M. Fatima ;
Alpuim, Pedro ;
Liu, Lifeng .
CHEMICAL COMMUNICATIONS, 2015, 51 (53) :10742-10745
[2]   Electrocatalytic and Photocatalytic Hydrogen Production from Acidic and Neutral-pH Aqueous Solutions Using Iron Phosphide Nanoparticles [J].
Callejas, Juan F. ;
McEnaney, Joshua M. ;
Read, Carlos G. ;
Crompton, J. Chance ;
Biacchi, Adam J. ;
Popczun, Eric J. ;
Gordon, Thomas R. ;
Lewis, Nathan S. ;
Schaak, Raymond E. .
ACS NANO, 2014, 8 (11) :11101-11107
[3]   Easily-prepared dinickel phosphide (Ni2P) nanoparticles as an efficient and robust electrocatalyst for hydrogen evolution [J].
Feng, Ligang ;
Vrubel, Heron ;
Bensimon, Michael ;
Hu, Xile .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (13) :5917-5921
[4]   Engineering Cobalt Phosphide (CoP) Thin Film Catalysts for Enhanced Hydrogen Evolution Activity on Silicon Photocathodes [J].
Hellstern, Thomas R. ;
Benck, Jesse D. ;
Kibsgaard, Jakob ;
Hahn, Christopher ;
Jaramillo, Thomas F. .
ADVANCED ENERGY MATERIALS, 2016, 6 (04)
[5]   Electrochemical Synthesis of Photoelectrodes and Catalysts for Use in Solar Water Splitting [J].
Kang, Donghyeon ;
Kim, Tae Woo ;
Kubota, Stephen R. ;
Cardiel, Allison C. ;
Cha, Hyun Gil ;
Choi, Kyoung-Shin .
CHEMICAL REVIEWS, 2015, 115 (23) :12839-12887
[6]   Powering the planet: Chemical challenges in solar energy utilization [J].
Lewis, Nathan S. ;
Nocera, Daniel G. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (43) :15729-15735
[7]   Cu2O Nanowire Photocathodes for Efficient and Durable Solar Water Splitting [J].
Luo, Jingshan ;
Steier, Ludmilla ;
Son, Min-Kyu ;
Schreier, Marcel ;
Mayer, Matthew T. ;
Graetzel, Michael .
NANO LETTERS, 2016, 16 (03) :1848-1857
[8]   Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices [J].
McCrory, Charles C. L. ;
Jung, Suho ;
Ferrer, Ivonne M. ;
Chatman, Shawn M. ;
Peters, Jonas C. ;
Jaramillo, Thomas F. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (13) :4347-4357
[9]   Will Solar-Driven Water-Splitting Devices See the Light of Day? [J].
McKone, James R. ;
Lewis, Nathan S. ;
Gray, Harry B. .
CHEMISTRY OF MATERIALS, 2014, 26 (01) :407-414
[10]   Ultrathin films on copper(I) oxide water splitting photocathodes: a study on performance and stability [J].
Paracchino, Adriana ;
Mathews, Nripan ;
Hisatomi, Takashi ;
Stefik, Morgan ;
Tilley, S. David ;
Graetzel, Michael .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (09) :8673-8681