Massive optimal data compression and density estimation for scalable, likelihood-free inference in cosmology

被引:113
作者
Alsing, Justin [1 ,2 ]
Wandelt, Benjamin [1 ,3 ,4 ,5 ]
Feeney, Stephen [1 ]
机构
[1] Ctr Computat Astrophys, Flatiron Inst, 162 5th Ave, New York, NY 10010 USA
[2] Imperial Coll London, Dept Phys, Imperial Ctr Inference & Cosmol, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England
[3] Sorbonne Univ, UPMC Univ Paris 6, CNRS, IAP,UMR 7095, 98bis Blvd Arago, F-75014 Paris, France
[4] Sorbonne Univ, ILP, 98bis Blvd Arago, F-75014 Paris, France
[5] Univ Illinois, Dept Phys & Astron, 1002 W Green St, Urbana, IL 61801 USA
关键词
methods: data analysis; APPROXIMATE BAYESIAN COMPUTATION; SEQUENTIAL MONTE-CARLO; PARAMETER-ESTIMATION; MODEL SELECTION; SIMULATIONS; CONSTRAINTS;
D O I
10.1093/mnras/sty819
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Many statistical models in cosmology can be simulated forwards but have intractable likelihood functions. Likelihood-free inference methods allow us to perform Bayesian inference from these models using only forward simulations, free from any likelihood assumptions or approximations. Likelihood-free inference generically involves simulating mock data and comparing to the observed data; this comparison in data space suffers from the curse of dimensionality and requires compression of the data to a small number of summary statistics to be tractable. In this paper, we use massive asymptotically optimal data compression to reduce the dimensionality of the data space to just one number per parameter, providing a natural and optimal framework for summary statistic choice for likelihood-free inference. Secondly, we present the first cosmological application of Density Estimation Likelihood-Free Inference (DELFI), which learns a parametrized model for joint distribution of data and parameters, yielding both the parameter posterior and the model evidence. This approach is conceptually simple, requires less tuning than traditional Approximate Bayesian Computation approaches to likelihood-free inference and can give high-fidelity posteriors from orders of magnitude fewer forward simulations. As an additional bonus, it enables parameter inference and Bayesian model comparison simultaneously. We demonstrate DELFI with massive data compression on an analysis of the joint light-curve analysis supernova data, as a simple validation case study. We show that high-fidelity posterior inference is possible for full-scale cosmological data analyses with as few as similar to 10(4) simulations, with substantial scope for further improvement, demonstrating the scalability of likelihood-free inference to large and complex cosmological data sets.
引用
收藏
页码:2874 / 2885
页数:12
相关论文
共 65 条
[1]   Planck 2015 results XVII. Constraints on primordial non-Gaussianity [J].
Ade, P. A. R. ;
Aghanim, N. ;
Arnaud, M. ;
Arrojam, F. ;
Ashdown, M. ;
Aumont, J. ;
Baccigalupi, C. ;
Ballardini, M. ;
Banday, A. J. ;
Barreiro, R. B. ;
Bartolo, N. ;
Basak, S. ;
Battaner, E. ;
Benabed, K. ;
Benoit, A. ;
Benoit-Levy, A. ;
Bernard, J. -P. ;
Bersanelli, M. ;
Bielewicz, P. ;
Bock, J. J. ;
Bonaldi, A. ;
Bonavera, L. ;
Bond, J. R. ;
Borrill, J. ;
Bouchet, F. R. ;
Boulanger, F. ;
Bucher, M. ;
Burigana, C. ;
Butler, R. C. ;
Calabrese, E. ;
Cardoso, J. -F. ;
Catalano, A. ;
Challinor, A. ;
Chamballu, A. ;
Chiang, H. C. ;
Christensen, P. R. ;
Church, S. ;
Clements, D. L. ;
Colombi, S. ;
Colombo, L. P. L. ;
Combet, C. ;
Couchot, F. ;
Coulais, A. ;
Crill, B. P. ;
Curto, A. ;
Cuttaia, F. ;
Danese, L. ;
Davies, R. D. ;
Davis, R. J. ;
de Bernardis, P. .
ASTRONOMY & ASTROPHYSICS, 2016, 594
[2]   Approximate Bayesian computation for forward modeling in cosmology [J].
Akeret, Joel ;
Refregier, Alexandre ;
Amara, Adam ;
Seehars, Sebastian ;
Hasner, Caspar .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2015, (08)
[3]   Generalized massive optimal data compression [J].
Alsing, Justin ;
Wandelt, Benjamin .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 476 (01) :L60-L64
[4]   Cosmological parameters, shear maps and power spectra from CFHTLenS using Bayesian hierarchical inference [J].
Alsing, Justin ;
Heavens, Alan ;
Jaffe, Andrew H. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 466 (03) :3272-3292
[5]  
[Anonymous], 2016, Advances in neural information processing systems
[6]   Adaptive approximate Bayesian computation [J].
Beaumont, Mark A. ;
Cornuet, Jean-Marie ;
Marin, Jean-Michel ;
Robert, Christian P. .
BIOMETRIKA, 2009, 96 (04) :983-990
[7]   Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples [J].
Betoule, M. ;
Kessler, R. ;
Guy, J. ;
Mosher, J. ;
Hardin, D. ;
Biswas, R. ;
Astier, P. ;
El-Hage, P. ;
Konig, M. ;
Kuhlmann, S. ;
Marriner, J. ;
Pain, R. ;
Regnault, N. ;
Balland, C. ;
Bassett, B. A. ;
Brown, P. J. ;
Campbell, H. ;
Carlberg, R. G. ;
Cellier-Holzern, F. ;
Cinabro, D. ;
Conley, A. ;
D'Andrea, C. B. ;
DePoy, D. L. ;
Doi, M. ;
Ellis, R. S. ;
Fabbro, S. ;
Filippenko, A. V. ;
Foley, R. J. ;
Frieman, J. A. ;
Fouchez, D. ;
Galbany, L. ;
Goobar, A. ;
Gupta, R. R. ;
Hill, G. J. ;
Hlozek, R. ;
Hogan, C. J. ;
Hook, I. M. ;
Howell, D. A. ;
Jha, S. W. ;
Le Guillou, L. ;
Leloudas, G. ;
Lidrnan, C. ;
Marshall, J. L. ;
Moeller, A. ;
Mourao, A. M. ;
Neveu, J. ;
Nichol, R. ;
Olmstead, M. D. ;
Palanque-Delabrouille, N. ;
Perlinutter, S. .
ASTRONOMY & ASTROPHYSICS, 2014, 568
[8]  
Bishop Christopher M, 2016, Pattern recognition and machine learning
[9]   A Comparative Review of Dimension Reduction Methods in Approximate Bayesian Computation [J].
Blum, M. G. B. ;
Nunes, M. A. ;
Prangle, D. ;
Sisson, S. A. .
STATISTICAL SCIENCE, 2013, 28 (02) :189-208
[10]   The Sherwood simulation suite: overview and data comparisons with the Lyman α forest at redshifts 2 ≤ z ≤ 5 [J].
Bolton, James S. ;
Puchwein, Ewald ;
Sijacki, Debora ;
Haehnelt, Martin G. ;
Kim, Tae-Sun ;
Meiksin, Avery ;
Regan, John A. ;
Viel, Matteo .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 464 (01) :897-914