On bending of strain gradient elastic micro-plates

被引:116
作者
Lazopoulos, K. A. [1 ]
机构
[1] Natl Tech Univ Athens, Dept Mech, Sch Math Sci SEMFE, GR-15773 Athens, Greece
关键词
Strain gradient elasticity; Bending; Plates; COUPLE STRESS THEORY; STABILITY;
D O I
10.1016/j.mechrescom.2009.05.005
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Bending of strain gradient elastic thin plates is studied, adopting Kirchhoff's theory of plates. Simple linear strain gradient elastic theory with surface energy is employed. The governing plate equation with its boundary conditions are derived through a variational method. It turns out that new terms are introduced, indicating the importance of the cross-section area in bending of thin plates. Those terms are missing from the existing strain gradient plate theories; however, they strongly increase the stiffness of the thin plate. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:777 / 783
页数:7
相关论文
共 12 条
[1]  
Altan BS., 1997, J. Mech. Behav. Mater, V8, P231, DOI [DOI 10.1515/JMBM.1997.8.3.231, 10.1515/JMBM.1997.8.3.231]
[2]   Experiments and theory in strain gradient elasticity [J].
Lam, DCC ;
Yang, F ;
Chong, ACM ;
Wang, J ;
Tong, P .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2003, 51 (08) :1477-1508
[3]   A note on line forces in gradient elasticity [J].
Lazar, M ;
Maugin, GA .
MECHANICS RESEARCH COMMUNICATIONS, 2006, 33 (05) :674-680
[4]   On the gradient strain elasticity theory of plates [J].
Lazopoulos, KA .
EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2004, 23 (05) :843-852
[5]  
LAZOPOULOS KA, BENDING THIN S UNPUB
[6]   A microstructure-dependent Timoshenko beam model based on a modified couple stress theory [J].
Ma, H. M. ;
Gao, X-L ;
Reddy, J. N. .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2008, 56 (12) :3379-3391
[7]  
Mindlin RD., 1965, Int. J. Solids Struct, V1, P417, DOI [10.1016/0020-7683(65)90006-5, DOI 10.1016/0020-7683(65)90006-5]
[8]   Static, stability and dynamic analysis of gradient elastic flexural Kirchhoff plates [J].
Papargyri-Beskou, S. ;
Beskos, D. E. .
ARCHIVE OF APPLIED MECHANICS, 2008, 78 (08) :625-635
[9]   Bending and stability analysis of gradient elastic beams [J].
Papargyri-Beskou, S ;
Tsepoura, KG ;
Polyzos, D ;
Beskos, DE .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2003, 40 (02) :385-400
[10]   Bernoulli-Euler beam model based on a modified couple stress theory [J].
Park, S. K. ;
Gao, X-L .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2006, 16 (11) :2355-2359