Flexible Recommendations for Course Planning

被引:2
作者
Koutrika, Georgia [1 ]
Bercovitz, Benjamin [1 ]
Ikeda, Robert [1 ]
Kaliszan, Filip [1 ]
Liou, Henry [1 ]
Garcia-Molina, Hector [1 ]
机构
[1] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
来源
ICDE: 2009 IEEE 25TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING, VOLS 1-3 | 2009年
关键词
D O I
10.1109/ICDE.2009.127
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Most recommendation methods are 'hard-wired' into the system and support only fixed recommendations. The purpose of this demo is to show the expressivity of flexible recommendation workflows, how flexible recommendations can be processed over relational data, and to show flexible recommendations in action through a real system used for course planning.
引用
收藏
页码:1467 / 1470
页数:4
相关论文
共 8 条
[1]   Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions [J].
Adomavicius, G ;
Tuzhilin, A .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2005, 17 (06) :734-749
[2]  
[Anonymous], IEEE INTELLIGENT SYS
[3]  
Das A.S., 2007, Google news personalization: scalable online collaborative filtering, P271, DOI DOI 10.1145/1242572.1242610
[4]   USING COLLABORATIVE FILTERING TO WEAVE AN INFORMATION TAPESTRY [J].
GOLDBERG, D ;
NICHOLS, D ;
OKI, BM ;
TERRY, D .
COMMUNICATIONS OF THE ACM, 1992, 35 (12) :61-70
[5]  
HERLOCKER J, 2004, TOIS, V22, P553
[6]  
KOUTRIKA G, 2008, RECSYS
[7]  
Linden G., 2003, IEEE INTERNET CO JAN
[8]  
MOBASHER B, 2007, ACM TOIT, V7