Constructing a spatiotemporally coherent long-term PM2.5 concentration dataset over China during 1980-2019 using a machine learning approach

被引:45
作者
Li, Huimin [1 ]
Yang, Yang [1 ]
Wang, Hailong [2 ]
Li, Baojie [1 ]
Wang, Pinya [1 ]
Li, Jiandong [1 ]
Liao, Hong [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Jiangsu Key Lab Atmospher Environm Monitoring & P, Jiangsu Collaborat Innovat Ctr Atmospher Environm, Sch Environm Sci & Engn, Nanjing, Jiangsu, Peoples R China
[2] Pacific Northwest Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA
基金
中国国家自然科学基金;
关键词
Fine particulate matter; Space-time random forest model; Atmospheric visibility; Spatial and temporal variation; Clean air actions; GROUND-LEVEL PM2.5; FINE PARTICULATE MATTER; AEROSOL OPTICAL DEPTH; SOURCE ATTRIBUTION; AIR-POLLUTION; BLACK CARBON; EXPOSURE; TRENDS; MORTALITY; HEALTH;
D O I
10.1016/j.scitotenv.2020.144263
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The lack of long-term observations and satellite retrievals of health-damaging fine particulate matter in China has demanded the estimates of historical PM2.5 (particulate matter less than 2.5 mu m in diameter) concentrations. This study constructs a gridded near-surface PM2.5 concentration dataset across China covering 1980-2019 using the space-time randomforest model with atmospheric visibility observations and other auxiliary data. Themodeled daily PM2.5 concentrations are in excellent agreementwith groundmeasurements, with a coefficient of determination of 0.95 and mean relative error of 12%. Besides the atmospheric visibility which explains 30% of total importance of variables in the model, emissions and meteorological conditions are also key factors affecting PM2.5 predictions. From 1980 to 2014, the model-predicted PM2.5 concentrations increased constantly with the maximum growth rate of 5-10 mu g/m(3)/decade over eastern China. Due to the clean air actions, PM2.5 concentrations have decreased effectively at a rate over 50 mu g/m(3)/decade in the North China Plain and 20-50 mu g/m(3)/decade over many regions of China during 2014-2019. The newly generated dataset of 1-degree gridded PM2.5 concentrations for the past 40 years across China provides a useful means for investigating interannual and decadal environmental and climate impacts related to aerosols. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 46 条
[21]   Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution [J].
Pope, CA ;
Burnett, RT ;
Thun, MJ ;
Calle, EE ;
Krewski, D ;
Ito, K ;
Thurston, GD .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2002, 287 (09) :1132-1141
[22]  
Qiu X-F., 2001, J. Geogr. Sci., V11, P253, DOI [DOI 10.1007/BF02892308, 10.1007/BF02892308]
[23]   Source attribution of Arctic black carbon and sulfate aerosols and associated Arctic surface warming during 1980-2018 [J].
Ren, Lili ;
Yang, Yang ;
Wang, Hailong ;
Zhang, Rudong ;
Wang, Pinya ;
Liao, Hong .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2020, 20 (14) :9067-9085
[24]   A SURVEY OF DECISION TREE CLASSIFIER METHODOLOGY [J].
SAFAVIAN, SR ;
LANDGREBE, D .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1991, 21 (03) :660-674
[25]   Retrieving historical ambient PM2.5 concentrations using existing visibility measurements in Xi'an, Northwest China [J].
Shen, Zhenxing ;
Cao, Junji ;
Zhang, Leiming ;
Zhang, Qian ;
Huang, R. -J. ;
Liu, Suixin ;
Zhao, Zhuzi ;
Zhu, Chongshu ;
Lei, Yali ;
Xu, Hongmei ;
Zheng, Chunli .
ATMOSPHERIC ENVIRONMENT, 2016, 126 :15-20
[26]   Estimation of daily PM10 and PM2.5 concentrations in Italy, 2013-2015, using a spatiotemporal land-use random-forest model [J].
Stafoggia, Massimo ;
Bellander, Tom ;
Bucci, Simone ;
Davoli, Marina ;
de Hoogh, Kees ;
de'Donato, Francesca ;
Gariazzo, Claudio ;
Lyapustin, Alexei ;
Michelozzi, Paola ;
Renzi, Matteo ;
Scortichini, Matteo ;
Shtein, Alexandra ;
Viegi, Giovanni ;
Kloog, Itai ;
Schwartz, Joel .
ENVIRONMENT INTERNATIONAL, 2019, 124 :170-179
[27]   Use of Satellite Observations for Long-Term Exposure Assessment of Global Concentrations of Fine Particulate Matter [J].
van Donkelaar, Aaron ;
Martin, Randall V. ;
Brauer, Michael ;
Boys, Brian L. .
ENVIRONMENTAL HEALTH PERSPECTIVES, 2015, 123 (02) :135-143
[28]   Estimation of PM2.5 Concentrations in China Using a Spatial Back Propagation Neural Network [J].
Wang, Weilin ;
Zhao, Suli ;
Jiao, Limin ;
Taylor, Michael ;
Zhang, Boen ;
Xu, Gang ;
Hou, Haobo .
SCIENTIFIC REPORTS, 2019, 9 (1)
[29]   Asian pollution climatically modulates mid-latitude cyclones following hierarchical modelling and observational analysis [J].
Wang, Yuan ;
Zhang, Renyi ;
Saravanan, R. .
NATURE COMMUNICATIONS, 2014, 5
[30]   Improved 1 km resolution PM2.5 estimates across China using enhanced space-time extremely randomized trees [J].
Wei, Jing ;
Li, Zhanqing ;
Cribb, Maureen ;
Huang, Wei ;
Xue, Wenhao ;
Sun, Lin ;
Guo, Jianping ;
Peng, Yiran ;
Li, Jing ;
Lyapustin, Alexei ;
Liu, Lei ;
Wu, Hao ;
Song, Yimeng .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2020, 20 (06) :3273-3289