Constructing a spatiotemporally coherent long-term PM2.5 concentration dataset over China during 1980-2019 using a machine learning approach

被引:45
作者
Li, Huimin [1 ]
Yang, Yang [1 ]
Wang, Hailong [2 ]
Li, Baojie [1 ]
Wang, Pinya [1 ]
Li, Jiandong [1 ]
Liao, Hong [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Jiangsu Key Lab Atmospher Environm Monitoring & P, Jiangsu Collaborat Innovat Ctr Atmospher Environm, Sch Environm Sci & Engn, Nanjing, Jiangsu, Peoples R China
[2] Pacific Northwest Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA
基金
中国国家自然科学基金;
关键词
Fine particulate matter; Space-time random forest model; Atmospheric visibility; Spatial and temporal variation; Clean air actions; GROUND-LEVEL PM2.5; FINE PARTICULATE MATTER; AEROSOL OPTICAL DEPTH; SOURCE ATTRIBUTION; AIR-POLLUTION; BLACK CARBON; EXPOSURE; TRENDS; MORTALITY; HEALTH;
D O I
10.1016/j.scitotenv.2020.144263
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The lack of long-term observations and satellite retrievals of health-damaging fine particulate matter in China has demanded the estimates of historical PM2.5 (particulate matter less than 2.5 mu m in diameter) concentrations. This study constructs a gridded near-surface PM2.5 concentration dataset across China covering 1980-2019 using the space-time randomforest model with atmospheric visibility observations and other auxiliary data. Themodeled daily PM2.5 concentrations are in excellent agreementwith groundmeasurements, with a coefficient of determination of 0.95 and mean relative error of 12%. Besides the atmospheric visibility which explains 30% of total importance of variables in the model, emissions and meteorological conditions are also key factors affecting PM2.5 predictions. From 1980 to 2014, the model-predicted PM2.5 concentrations increased constantly with the maximum growth rate of 5-10 mu g/m(3)/decade over eastern China. Due to the clean air actions, PM2.5 concentrations have decreased effectively at a rate over 50 mu g/m(3)/decade in the North China Plain and 20-50 mu g/m(3)/decade over many regions of China during 2014-2019. The newly generated dataset of 1-degree gridded PM2.5 concentrations for the past 40 years across China provides a useful means for investigating interannual and decadal environmental and climate impacts related to aerosols. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 46 条
[11]   Estimating ground-level PM2.5 concentrations in Beijing using a satellite-based geographically and temporally weighted regression model [J].
Guo, Yuanxi ;
Tang, Qiuhong ;
Gong, Dao-Yi ;
Zhang, Ziyin .
REMOTE SENSING OF ENVIRONMENT, 2017, 198 :140-149
[12]   Health impact of China's Air Pollution Prevention and Control Action Plan: an analysis of national air quality monitoring and mortality data [J].
Huang, Jing ;
Pan, Xiaochuan ;
Guo, Xinbiao ;
Li, Guoxing .
LANCET PLANETARY HEALTH, 2018, 2 (07) :E313-E323
[13]   PM2.5 Prediction Based on Random Forest, XGBoost, and Deep Learning Using Multisource Remote Sensing Data [J].
Joharestani, Mehdi Zamani ;
Cao, Chunxiang ;
Ni, Xiliang ;
Bashir, Barjeece ;
Talebiesfandarani, Somayeh .
ATMOSPHERE, 2019, 10 (07)
[14]   Retrieval of surface PM2.5 mass concentrations over North China using visibility measurements and GEOS-Chem simulations [J].
Li, Sixuan ;
Chen, Lulu ;
Huang, Gang ;
Lin, Jintai ;
Yan, Yingying ;
Ni, Ruijing ;
Huo, Yanfeng ;
Wang, Jingxu ;
Liu, Mengyao ;
Weng, Hongjian ;
Wang, Yonghong ;
Wang, Zifa .
ATMOSPHERIC ENVIRONMENT, 2020, 222
[15]   Estimating Ground-Level PM2.5 by Fusing Satellite and Station Observations: A Geo-Intelligent Deep Learning Approach [J].
Li, Tongwen ;
Shen, Huanfeng ;
Yuan, Qiangqiang ;
Zhang, Xuechen ;
Zhang, Liangpei .
GEOPHYSICAL RESEARCH LETTERS, 2017, 44 (23) :11985-11993
[16]   Visibility-Based PM2.5 Concentrations in China: 1957-1964 and 1973-2014 [J].
Liu, Miaomiao ;
Bi, Jun ;
Ma, Zongwei .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2017, 51 (22) :13161-13169
[17]   Estimating Regional Spatial and Temporal Variability of PM2.5 Concentrations Using Satellite Data, Meteorology, and Land Use Information [J].
Liu, Yang ;
Paciorek, Christopher J. ;
Koutrakis, Petros .
ENVIRONMENTAL HEALTH PERSPECTIVES, 2009, 117 (06) :886-892
[18]   Satellite-Based Spatiotemporal Trends in PM2.5 Concentrations: China, 2004-2013 [J].
Ma, Zongwei ;
Hu, Xuefei ;
Sayer, Andrew M. ;
Levy, Robert ;
Zhang, Qiang ;
Xue, Yingang ;
Tong, Shilu ;
Bi, Jun ;
Huang, Lei ;
Liu, Yang .
ENVIRONMENTAL HEALTH PERSPECTIVES, 2016, 124 (02) :184-192
[19]   Estimating Ground-Level PM2.5 in China Using Satellite Remote Sensing [J].
Ma, Zongwei ;
Hu, Xuefei ;
Huang, Lei ;
Bi, Jun ;
Liu, Yang .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2014, 48 (13) :7436-7444
[20]   Exposure to particulate matter in India: A synthesis of findings and future directions [J].
Pant, Pallavi ;
Guttikunda, Sarath K. ;
Peltier, Richard E. .
ENVIRONMENTAL RESEARCH, 2016, 147 :480-496