Direct multiplex imaging and optogenetics of Rho GTPases enabled by near-infrared FRET

被引:114
作者
Shcherbakova, Daria M. [1 ,2 ]
Cammer, Natasha Cox [1 ]
Huisman, Tsipora M. [1 ]
Verkhusha, Vladislav V. [1 ,2 ,3 ]
Hodgson, Louis [1 ,2 ]
机构
[1] Albert Einstein Coll Med, Dept Anat & Struct Biol, Bronx, NY 10467 USA
[2] Albert Einstein Coll Med, Gruss Lipper Biophoton Ctr, Bronx, NY 10467 USA
[3] Univ Helsinki, Fac Med, Dept Biochem & Dev Biol, Helsinki, Finland
基金
美国国家卫生研究院;
关键词
FLUORESCENT PROTEINS; SPATIOTEMPORAL DYNAMICS; BIOSENSORS; RAC; CDC42; COORDINATION; ANTAGONISM; ACTIVATION; EXPRESSION; KINASES;
D O I
10.1038/s41589-018-0044-1
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Direct visualization and light control of several cellular processes is a challenge, owing to the spectral overlap of available genetically encoded probes. Here we report the most red-shifted monomeric near-infrared (NIR) fluorescent protein, miRFP720, and the fully NIR Forster resonance energy transfer (FRET) pair miRFP670-miRFP720, which together enabled design of biosensors compatible with CFP-YFP imaging and blue-green optogenetic tools. We developed a NIR biosensor for Rac1 GTPase and demonstrated its use in multiplexed imaging and light control of Rho GTPase signaling pathways. Specifically, we combined the Rac1 biosensor with CFP-YFP FRET biosensors for RhoA and for Rac1-GDI binding, and concurrently used the LOV-TRAP tool for upstream Rac1 activation. We directly observed and quantified antagonism between RhoA and Rac1 dependent on the RhoA-downstream effector ROCK; showed that Rac1 activity and GDI binding closely depend on the spatiotemporal coordination between these two molecules; and simultaneously observed Rac1 activity during optogenetic manipulation of Rac1.
引用
收藏
页码:591 / +
页数:17
相关论文
共 49 条
[1]   The two guanine nucleotide exchange factor domains of Trio link the Rac1 and the RhoA pathways in vivo [J].
Bellanger, JM ;
Lazaro, JB ;
Diriong, S ;
Fernandez, A ;
Lamb, N ;
Debant, A .
ONCOGENE, 1998, 16 (02) :147-152
[2]   Dimerization properties of the RpBphP2 chromophore-binding domain crystallized by homologue-directed mutagenesis [J].
Bellini, Dom ;
Papiz, Miroslav Z. .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 2012, 68 :1058-1066
[3]  
Benard V, 2002, METHOD ENZYMOL, V345, P349
[4]  
Brunet JP, 2000, J VIROL, V74, P10801, DOI 10.1128/JVI.74.22.10801-10806.2000
[5]   A PKA activity sensor for quantitative analysis of endogenous GPCR signaling via 2-photon FRET-FLIM imaging [J].
Chen, Yao ;
Saulnier, Jessica L. ;
Yellen, Gary ;
Sabatini, Bernardo L. .
FRONTIERS IN PHARMACOLOGY, 2014, 5
[6]   Near-Infrared Fluorescent Proteins, Biosensors, and Optogenetic Tools Engineered from Phytochromes [J].
Chernov, Konstantin G. ;
Redchuk, Taras A. ;
Omelina, Evgeniya S. ;
Verkhushaa, Vladislav V. .
CHEMICAL REVIEWS, 2017, 117 (09) :6423-6446
[7]   Adhesion to the extracellular matrix regulates the coupling of the small GTPase Rac to its effector PAK [J].
del Pozo, MA ;
Price, LS ;
Alderson, NB ;
Ren, XD ;
Schwartz, MA .
EMBO JOURNAL, 2000, 19 (09) :2008-2014
[8]   Multiplexing PKA and ERK1&2 kinases FRET biosensors in living cells using single excitation wavelength dual colour FLIM [J].
Demeautis, Claire ;
Sipieter, Francois ;
Roul, Julien ;
Chapuis, Catherine ;
Padilla-Parra, Sergi ;
Riquet, Franck B. ;
Tramier, Marc .
SCIENTIFIC REPORTS, 2017, 7
[9]   Bright and stable near-infrared fluorescent protein for in vivo imaging [J].
Filonov, Grigory S. ;
Piatkevich, Kiryl D. ;
Ting, Li-Min ;
Zhang, Jinghang ;
Kim, Kami ;
Verkhusha, Vladislav V. .
NATURE BIOTECHNOLOGY, 2011, 29 (08) :757-U133
[10]   Visualization of JNK activity dynamics with a genetically encoded fluorescent biosensor [J].
Fosbrink, Matthew ;
Aye-Han, Nwe-Nwe ;
Cheong, Raymond ;
Levchenko, Andre ;
Zhang, Jin .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (12) :5459-5464