Sensitivity of a dynamic global vegetation model to climate and atmospheric CO2

被引:58
作者
Gerber, S
Joos, F
Prentice, IC
机构
[1] Univ Bern, Inst Phys, CH-3012 Bern, Switzerland
[2] Max Planck Inst Biogeochem, D-07745 Jena, Germany
[3] Univ Bristol, Dept Earth Sci, QUEST, Bristol BS8 1TH, Avon, England
关键词
carbon dioxide; CO2; dynamic vegetation model; global warming; terrestrial biosphere; terrestrial carbon storage;
D O I
10.1111/j.1529-8817.2003.00807.x
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
The equilibrium carbon storage capacity of the terrestrial biosphere has been investigated by running the Lund-Potsdam-Jena Dynamic Global Vegetation Model to equilibrium for a range of CO2 concentrations and idealized climate states. Local climate is defined by the combination of an observation-based climatology and perturbation patterns derived from a 4 x CO2 warming simulations, which are linearly scaled to global mean temperature deviations, DeltaT(glob). Global carbon storage remains close to its optimum for DeltaT(glob) in the range of +/-3degreesC in simulations with constant atmospheric CO2. The magnitude of the carbon loss to the atmosphere per unit change in global average surface temperature shows a pronounced nonlinear threshold behavior. About twice as much carbon is lost per degree warming for DeltaT(glob) above 3degreesC than for present climate. Tropical, temperate, and boreal trees spread poleward with global warming. Vegetation dynamics govern the distribution of soil carbon storage and turnover in the climate space. For cold climate conditions, the global average decomposition rate of litter and soil decreases with warming, despite local increases in turnover rates. This result is not compatible with the assumption, commonly made in global box models, that soil turnover increases exponentially with global average surface temperature, over a wide temperature range.
引用
收藏
页码:1223 / 1239
页数:17
相关论文
共 93 条
[1]  
[Anonymous], 66 PCMDI U CAL LAWR
[2]  
Baldocchi D, 2001, B AM METEOROL SOC, V82, P2415, DOI 10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO
[3]  
2
[4]   Effect of global atmospheric carbon dioxide on glacial-interglacial vegetation change [J].
Bennett, KD ;
Willis, KJ .
GLOBAL ECOLOGY AND BIOGEOGRAPHY, 2000, 9 (05) :355-361
[5]   Climate change and Arctic ecosystems:: 1.: Vegetation changes north of 55°N between the last glacial maximum, mid-Holocene, and present -: art. no. 8170 [J].
Bigelow, NH ;
Brubaker, LB ;
Edwards, ME ;
Harrison, SP ;
Prentice, IC ;
Anderson, PM ;
Andreev, AA ;
Bartlein, PJ ;
Christensen, TR ;
Cramer, W ;
Kaplan, JO ;
Lozhkin, AV ;
Matveyeva, NV ;
Murray, DF ;
McGuire, AD ;
Razzhivin, VY ;
Ritchie, JC ;
Smith, B ;
Walker, DA ;
Gajewski, K ;
Wolf, V ;
Holmqvist, BH ;
Igarashi, Y ;
Kremenetskii, K ;
Paus, A ;
Pisaric, MFJ ;
Volkova, VS .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2003, 108 (D19)
[6]   TERRESTRIAL CARBON STORAGE AT THE LGM [J].
BIRD, MI ;
LLOYD, J ;
FARQUHAR, GD .
NATURE, 1994, 371 (6498) :566-566
[7]   NOTE ON CONCEPTS OF AGE DISTRIBUTION AND TRANSIT-TIME IN NATURAL RESERVOIRS [J].
BOLIN, B ;
RODHE, H .
TELLUS, 1973, 25 (01) :58-62
[8]   Dynamic responses of terrestrial ecosystem carbon cycling to global climate change [J].
Cao, MK ;
Woodward, FI .
NATURE, 1998, 393 (6682) :249-252
[9]   Contributions of land-use history to carbon accumulation in US forests [J].
Caspersen, JP ;
Pacala, SW ;
Jenkins, JC ;
Hurtt, GC ;
Moorcroft, PR ;
Birdsey, RA .
SCIENCE, 2000, 290 (5494) :1148-1151
[10]   Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems [J].
Cleveland, CC ;
Townsend, AR ;
Schimel, DS ;
Fisher, H ;
Howarth, RW ;
Hedin, LO ;
Perakis, SS ;
Latty, EF ;
Von Fischer, JC ;
Elseroad, A ;
Wasson, MF .
GLOBAL BIOGEOCHEMICAL CYCLES, 1999, 13 (02) :623-645