Parameter Identification of Induction Motor Using Modified Particle Swarm Optimization Algorithm

被引:0
|
作者
Emara, Hassan M. [1 ]
Elshamy, Wesam [2 ]
Bahgat, A. [1 ]
机构
[1] Cairo Univ, Dept Elect Power & Machines, Fac Engn, Cairo, Egypt
[2] Kansas State Univ, Dept Comp & Informat Sci, Manhattan, KS 66506 USA
关键词
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents a new technique for induction motor parameter identification. The proposed technique is based on a simple startup test using a standard V/F inverter. The recorded startup currents are compared to that obtained by simulation of an induction motor model. A Modified PSO optimization is used to find out the best model parameter that minimizes the sum square error between the measured and the simulated currents. The performance of the modified PSO is compared with other optimization methods including line search, conventional PSO and Genetic Algorithms. Simulation results demonstrate the ability of the proposed technique to capture the true values of the machine parameters and the superiority of the results obtained using the modified PSO over other optimization techniques.
引用
收藏
页码:2194 / +
页数:2
相关论文
共 50 条
  • [31] A modified particle swarm optimization algorithm
    He, J. (hejie1213@126.com), 1600, Universitas Ahmad Dahlan, Jalan Kapas 9, Semaki, Umbul Harjo,, Yogiakarta, 55165, Indonesia (11):
  • [32] Improved Particle Swarm Optimization for Parameter Identification of Permanent Magnet Synchronous Motor
    Zhou, Shuai
    Wang, Dazhi
    Ni, Yongliang
    Song, Keling
    Li, Yanming
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 79 (02): : 2187 - 2207
  • [33] Fast Backfire Double Annealing Particle Swarm Optimization Algorithm for Parameter Identification of Permanent Magnet Synchronous Motor
    Wen, Dingdou
    Shi, Chuandong
    Liao, Kaixian
    Liu, Jianhua
    Zhang, Yang
    PROGRESS IN ELECTROMAGNETICS RESEARCH M, 2021, 104 : 23 - 38
  • [34] Parameter analysis of particle swarm optimization algorithm
    Yao, Yao-Zhong
    Xu, Yu-Ru
    Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 2007, 28 (11): : 1242 - 1246
  • [35] Parameter Evolution for a Particle Swarm Optimization Algorithm
    Zhou, Aimin
    Zhang, Guixu
    Konstantinidis, Andreas
    ADVANCES IN COMPUTATION AND INTELLIGENCE, 2010, 6382 : 33 - +
  • [36] A Modified Particle Swarm Optimization Algorithm using Uniform Design
    Al-Mter, Adel H.
    Lu, Song-Feng
    2016 INTERNATIONAL CONFERENCE ON INFORMATION SYSTEM AND ARTIFICIAL INTELLIGENCE (ISAI 2016), 2016, : 432 - 435
  • [37] Kinematic Parameter Identification for a Parallel Robot with an Improved Particle Swarm Optimization Algorithm
    Yu, Dayong
    APPLIED SCIENCES-BASEL, 2024, 14 (15):
  • [38] ARMA Model identification using Particle Swarm Optimization Algorithm
    Wang, Jianzhou
    Liang, Jinzhao
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGY, 2008, : 223 - 227
  • [39] USING PARTICLE SWARM OPTIMIZATION ALGORITHM FOR PARAMETER ESTIMATION IN HYDROLOGICAL MODELLING
    Jakubcova, Michala
    INFORMATICS, GEOINFORMATICS AND REMOTE SENSING, VOL I (SGEM 2015), 2015, : 399 - 406
  • [40] Induction Motor Parameter Identification Using a Gravitational Search Algorithm
    Avalos, Omar
    Cuevas, Erik
    Galvez, Jorge
    COMPUTERS, 2016, 5 (02)