Parameter Identification of Induction Motor Using Modified Particle Swarm Optimization Algorithm

被引:0
|
作者
Emara, Hassan M. [1 ]
Elshamy, Wesam [2 ]
Bahgat, A. [1 ]
机构
[1] Cairo Univ, Dept Elect Power & Machines, Fac Engn, Cairo, Egypt
[2] Kansas State Univ, Dept Comp & Informat Sci, Manhattan, KS 66506 USA
关键词
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents a new technique for induction motor parameter identification. The proposed technique is based on a simple startup test using a standard V/F inverter. The recorded startup currents are compared to that obtained by simulation of an induction motor model. A Modified PSO optimization is used to find out the best model parameter that minimizes the sum square error between the measured and the simulated currents. The performance of the modified PSO is compared with other optimization methods including line search, conventional PSO and Genetic Algorithms. Simulation results demonstrate the ability of the proposed technique to capture the true values of the machine parameters and the superiority of the results obtained using the modified PSO over other optimization techniques.
引用
收藏
页码:2194 / +
页数:2
相关论文
共 50 条
  • [21] Parameter Identification of Thermoeletric Modules using Particle Swarm Optimization
    Ojeda G, Daniel R.
    de Almeida, Luiz A. L.
    Vilcanqui, Omar A. C.
    2015 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC), 2015, : 812 - 817
  • [22] USING MODIFIED FUZZY PARTICLE SWARM OPTIMIZATION ALGORITHM FOR PARAMETER ESTIMATION OF SURGE ARRESTERS MODELS
    Nafar, Mehdi
    Gharehpetian, Gevork B.
    Niknam, Taher
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2012, 8 (1B): : 567 - 581
  • [23] Comparison of the parameter estimation methods of surge arresters using modified particle swarm optimization algorithm
    Nafar, M.
    Gharehpetian, G. B.
    Niknam, T.
    EUROPEAN TRANSACTIONS ON ELECTRICAL POWER, 2012, 22 (08): : 1146 - 1160
  • [24] A Modified Particle Swarm Optimization Algorithm
    Liu, Enhai
    Dong, Yongfeng
    Song, Jie
    Hou, Xiangdan
    Li, Nana
    2008 INTERNATIONAL WORKSHOP ON EDUCATION TECHNOLOGY AND TRAINING AND 2008 INTERNATIONAL WORKSHOP ON GEOSCIENCE AND REMOTE SENSING, VOL 2, PROCEEDINGS,, 2009, : 666 - 669
  • [25] A Modified Particle Swarm Optimization Algorithm
    Zhu, Jinrong
    JOURNAL OF COMPUTERS, 2009, 4 (12) : 1231 - 1236
  • [26] A modified particle swarm optimization algorithm
    Jiang Yan
    Hu Tiesong
    Huang Chongchao
    Wu Xianing
    2006 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY, PTS 1 AND 2, PROCEEDINGS, 2006, : 421 - 424
  • [27] A modified Particle Swarm Optimization algorithm
    Liu Yitong
    Fu Mengyin
    Gao Hongbin
    PROCEEDINGS OF THE 26TH CHINESE CONTROL CONFERENCE, VOL 3, 2007, : 479 - +
  • [28] Modified particle swarm optimization algorithm
    Wen, SH
    Zhang, XL
    Li, HN
    Liu, SY
    Wang, JY
    PROCEEDINGS OF THE 2005 INTERNATIONAL CONFERENCE ON NEURAL NETWORKS AND BRAIN, VOLS 1-3, 2005, : 318 - 321
  • [29] A modified particle swarm optimization algorithm
    Zhang, QL
    Li, X
    Tran, QA
    PROCEEDINGS OF 2005 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-9, 2005, : 2993 - 2995
  • [30] Serial robots geometrical parameter identification using modified quantum behaved particle swarm optimization
    Tong, Haomeng
    PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON MECHATRONICS, MATERIALS, CHEMISTRY AND COMPUTER ENGINEERING 2015 (ICMMCCE 2015), 2015, 39 : 3017 - 3020