Monotone method for first- and second-order periodic boundary value problems and periodic solutions of functional differential equations

被引:64
作者
Jiang, DQ [1 ]
Wei, JJ [1 ]
机构
[1] NE Normal Univ, Dept Math, Changchun 130024, Peoples R China
基金
中国国家自然科学基金;
关键词
periodic boundary value problem; periodic solution; existence; upper and lower solution; monotone iterative technique;
D O I
10.1016/S0362-546X(01)00782-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The monotone iterative technique was used to study first and second order periodic boundary value problems and periodic solutions of functional differential equations. A maximum principle was used to prove the validity of the monotone iterative technique. The concepts of lower and upper solutions were defined for the problems in the context.
引用
收藏
页码:885 / 898
页数:14
相关论文
共 10 条
[1]   PERIODIC BOUNDARY-VALUE-PROBLEMS AND MONOTONE ITERATIVE METHODS FOR FUNCTIONAL-DIFFERENTIAL EQUATIONS [J].
HADDOCK, JR ;
NKASHAMA, MN .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1994, 22 (03) :267-276
[2]   On boundary value problems for singular second-order functional differential equations [J].
Jiang, DQ ;
Wang, JY .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 116 (02) :231-241
[3]  
Ladde GS., 1985, MONOTONE ITERATIVE T
[4]   PERIODIC BOUNDARY-VALUE PROBLEM FOR DIFFERENTIAL-EQUATIONS WITH DELAY AND MONOTONE ITERATIVE METHOD [J].
LEELA, S ;
OGUZTORELI, MN .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1987, 122 (02) :301-307
[5]   Periodic boundary value problems for a class of functional differential equations [J].
Liz, E ;
Nieto, JJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 200 (03) :680-686
[6]   Monotone iterative method for functional differential equations [J].
Nieto, JJ ;
Jiang, Y ;
Jurang, Y .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 32 (06) :741-747
[7]   Existence and approximation of solutions for nonlinear functional differential equations with periodic boundary value conditions [J].
Nieto, JJ ;
Rodríguez-López, R .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2000, 40 (4-5) :433-442
[8]  
NIETO JJ, 1999, ACTA SCI MATH SZEGED, V65, P121
[9]   Parallel multigrid finite volume computation of three-dimensional thermal convection [J].
Wang, P ;
Ferraro, RD .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1999, 37 (09) :49-60
[10]   Existence of positive solutions for boundary value problem of second-order FDE [J].
Weng, PX ;
Jiang, DQ .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1999, 37 (10) :1-9