APPROXIMATION OF WEAKLY SINGULAR INTEGRAL EQUATIONS BY SINC PROJECTION METHODS

被引:1
作者
Nedaiasl, Khadijeh [1 ]
机构
[1] Inst Adv Studies Basic Sci, Zanjan, Iran
来源
ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS | 2020年 / 52卷
关键词
Fredholm integral equation; Urysohn integral operator; weak singularity; convolution method; collocation method; QUADRATURE;
D O I
10.1553/etna_vol52s416
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, two numerical schemes for a nonlinear integral equation of Fredholm type with weakly singular kernel are studied. These numerical methods blend collocation, convolution, and approximations based on sinc basis functions with iterative schemes like the steepest descent and Newton's method, involving the solution of a nonlinear system of equations. Exponential rate of convergence for the convolution scheme is shown and collocation method is analyzed. Numerical experiments are presented to illustrate the sharpness of the theoretical estimates and the sensitivity of the solutions with respect to some parameters in the equations. The comparison between the schemes indicates that the sinc convolution method is more effective.
引用
收藏
页码:416 / 430
页数:15
相关论文
共 26 条
  • [1] Numerical solutions of weakly singular Hammerstein integral equations
    Allouch, C.
    Sbibih, D.
    Tahrichi, M.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2018, 329 : 118 - 128
  • [2] SUPERCONVERGENCE OF SOME PROJECTION APPROXIMATIONS FOR WEAKLY SINGULAR INTEGRAL EQUATIONS USING GENERAL GRIDS
    Amosov, Andrey
    Ahues, Mario
    Largillier, Alain
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (01) : 646 - 674
  • [3] [Anonymous], 2011, Handbook of Sinc Numerical Methods
  • [4] Atkinson K., 1992, J INTEGR EQUAT APPL, V4, P15, DOI 10.1216/jiea/1181075664
  • [5] Burden R. L., 1978, Numerical analysis
  • [6] Cao Y., 1994, J. Integral Equations Appl, V6, P303, DOI DOI 10.1216/jiea/1181075816
  • [7] Chen Z., 1999, J. Integral Equ. Appl, V11, P1, DOI [10.1216/jiea/1181074260, DOI 10.1216/JIEA/1181074260]
  • [8] Legendre Spectral Projection Methods for Fredholm-Hammerstein Integral Equations
    Das, Payel
    Sahani, Mitali Madhumita
    Nelakanti, Gnaneshwar
    Long, Guangqing
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2016, 68 (01) : 213 - 230
  • [9] Modified projection method for Urysohn integral equations with non-smooth kernels
    Grammont, Laurence
    Kulkarni, Rekha P.
    Nidhin, T. J.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 294 : 309 - 322
  • [10] KRASNOSELSKI M. A., 1984, GEOMETRICAL METHODS