Presentation of hyperbolic Kac-Moody groups over rings

被引:6
作者
Allcock, Daniel [1 ]
Carbone, Lisa [2 ]
机构
[1] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
[2] Rutgers State Univ, Dept Math, Piscataway, NJ 08855 USA
基金
美国国家科学基金会; 日本学术振兴会;
关键词
Finite presentation; Hyperbolic Kac-Moody group; ARITHMETIC GROUPS;
D O I
10.1016/j.jalgebra.2015.08.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Tits has defined Kac-Moody and Steinberg groups over commutative rings, providing infinite dimensional analogues of the Chevalley-Demazure group schemes. Here we establish simple explicit presentations for all Steinberg and Kac-Moody groups whose Dynkin diagrams are hyperbolic and simply laced. Our presentations are analogues of the Curtis-Tits presentation of the finite groups of Lie type. When the ground ring is finitely generated, we derive the finite presentability of the Steinberg group, and similarly for the Kac-Moody group when the ground ring is a Dedekind domain of arithmetic type. These finite-presentation results need slightly stronger hypotheses when the rank is smallest possible, namely 4. The presentations simplify considerably when the ground ring is Z, a case of special interest because of the conjectured role of the Kac-Moody group E-10 (Z) in superstring theory. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:232 / 243
页数:12
相关论文
共 20 条
[1]   Presentation by amalgamation of certain twin BN-pairs [J].
Abramenko, P ;
Muhlherr, B .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (07) :701-706
[2]  
Allcock D., ARXIV14090176
[3]  
Allcock D., ARXIV13072689
[4]  
Allcock D., ARXIV14090184
[5]  
Allcock D., 2014, FINITE PRESENT UNPUB
[6]  
[Anonymous], 1990, CAMBRIDGE STUD ADV M
[7]  
Behr H, 1998, J REINE ANGEW MATH, V495, P79
[8]   Higher finiteness properties of reductive arithmetic groups in positive characteristic: The Rank Theorem [J].
Bux, Kai-Uwe ;
Koehl, Ralf ;
Witzel, Stefan .
ANNALS OF MATHEMATICS, 2013, 177 (01) :311-366
[9]  
Caprace P.-E., 2007, OXFORD LECT NOTES
[10]   On 2-spherical Kac-Moody groups and their central extensions [J].
Caprace, Pierre-Emmanuel .
FORUM MATHEMATICUM, 2007, 19 (05) :763-781