Role of Ural blocking in Arctic sea ice loss and its connection with Arctic warming in winter

被引:15
作者
Cho, Dong-Jae [1 ]
Kim, Kwang-Yul [1 ]
机构
[1] Seoul Natl Univ, Sch Earth & Environm Sci, Seoul 08826, South Korea
基金
新加坡国家研究基金会;
关键词
Sea ice concentration; Ural blocking; Arctic warming; Feedback mechanism; Heat and moisture budget analysis; ATMOSPHERIC RESPONSE; SENSIBLE HEAT; COLD WINTERS; AMPLIFICATION; IMPACT; MECHANISM; MOISTURE; EOFS;
D O I
10.1007/s00382-020-05545-3
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Ural blocking (UB) is suggested as one of the contributors to winter sea ice loss in the Barents-Kara Seas (BKS). This study compares UB with Arctic warming (AW) in order to delineate the role of UB on winter sea ice loss and its potential link with AW. A detailed comparison reveals that UB and AW are partly linked on sub-seasonal scales via a two-way interaction; circulation produced by AW affects UB and advection induced by UB affects temperature in AW. On the other hand, the long-term impacts of AW and UB on the sea ice concentration in the BKS are distinct. In AW, strong turbulent flux from the sea surface warms the lower troposphere, increases downward longwave radiation, and broadens the open sea surface. This feedback process explains the substantial sea ice reduction observed in the BKS in association with long-term accelerating trend. Patterns of turbulent flux, net evaporation, and net longwave radiation at surface associated with UB are of opposite signs to those associated with AW, which implies that moisture and heat flux is suppressed as warm and moist air is advected from mid-latitudes. As a result, vertical feedback process is hindered under UB. The qualitative and quantitative differences arise in terms of their impacts on sea ice concentrations in the BKS, because strong turbulent flux from the open sea surface is a main driving force in AW whereas heat and moisture advection is a main forcing in UB.
引用
收藏
页码:1571 / 1588
页数:18
相关论文
共 49 条
[11]   The ERA-Interim reanalysis: configuration and performance of the data assimilation system [J].
Dee, D. P. ;
Uppala, S. M. ;
Simmons, A. J. ;
Berrisford, P. ;
Poli, P. ;
Kobayashi, S. ;
Andrae, U. ;
Balmaseda, M. A. ;
Balsamo, G. ;
Bauer, P. ;
Bechtold, P. ;
Beljaars, A. C. M. ;
van de Berg, L. ;
Bidlot, J. ;
Bormann, N. ;
Delsol, C. ;
Dragani, R. ;
Fuentes, M. ;
Geer, A. J. ;
Haimberger, L. ;
Healy, S. B. ;
Hersbach, H. ;
Holm, E. V. ;
Isaksen, L. ;
Kallberg, P. ;
Koehler, M. ;
Matricardi, M. ;
McNally, A. P. ;
Monge-Sanz, B. M. ;
Morcrette, J. -J. ;
Park, B. -K. ;
Peubey, C. ;
de Rosnay, P. ;
Tavolato, C. ;
Thepaut, J. -N. ;
Vitart, F. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2011, 137 (656) :553-597
[12]   The Seasonal Atmospheric Response to Projected Arctic Sea Ice Loss in the Late Twenty-First Century [J].
Deser, Clara ;
Tomas, Robert ;
Alexander, Michael ;
Lawrence, David .
JOURNAL OF CLIMATE, 2010, 23 (02) :333-351
[13]  
Francis J.A., 2006, Eos, V87, P509
[14]   Evidence linking Arctic amplification to extreme weather in mid-latitudes [J].
Francis, Jennifer A. ;
Vavrus, Stephen J. .
GEOPHYSICAL RESEARCH LETTERS, 2012, 39
[15]  
FRIEHE CA, 1976, J PHYS OCEANOGR, V6, P801, DOI 10.1175/1520-0485(1976)006<0801:POASIF>2.0.CO
[16]  
2
[17]  
Gong TT, 2017, J CLIMATE, V30, P2639, DOI [10.1175/JCLI-D-16-0548.1, 10.1175/jcli-d-16-0548.1]
[18]   Vertical structure of recent Arctic warming [J].
Graversen, Rune G. ;
Mauritsen, Thorsten ;
Tjernstrom, Michael ;
Kallen, Erland ;
Svensson, Gunilla .
NATURE, 2008, 451 (7174) :53-U4
[19]   Relative role of horizontal and vertical processes in the physical mechanism of wintertime Arctic amplification [J].
Kim, Ji-Young ;
Kim, Kwang-Yul .
CLIMATE DYNAMICS, 2019, 52 (9-10) :6097-6107
[20]   Vertical Feedback Mechanism of Winter Arctic Amplification and Sea Ice Loss [J].
Kim, Kwang-Yul ;
Kim, Ji-Young ;
Kim, Jinju ;
Yeo, Saerim ;
Na, Hanna ;
Hamlington, Benjamin D. ;
Leben, Robert R. .
SCIENTIFIC REPORTS, 2019, 9 (1)