High-efficiency reconciliation for continuous variable quantum key distribution

被引:28
|
作者
Bai, Zengliang [1 ,2 ]
Yang, Shenshen [1 ,2 ]
Li, Yongmin [1 ,2 ]
机构
[1] Shanxi Univ, Inst Optoelect, State Key Lab Quantum Opt & Quantum Opt Devices, Taiyuan 030006, Peoples R China
[2] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Peoples R China
基金
中国国家自然科学基金;
关键词
PARITY-CHECK CODES; INFORMATION; SECURITY; DESIGN;
D O I
10.7567/JJAP.56.044401
中图分类号
O59 [应用物理学];
学科分类号
摘要
Quantum key distribution (QKD) is the most mature application of quantum information technology. Information reconciliation is a crucial step in QKD and significantly affects the final secret key rates shared between two legitimate parties. We analyze and compare various construction methods of low-density parity-check (LDPC) codes and design high-performance irregular LDPC codes with a block length of 10(6). Starting from these good codes and exploiting the slice reconciliation technique based on multilevel coding and multistage decoding, we realize high-efficiency Gaussian key reconciliation with efficiency higher than 95% for signal-to-noise ratios above 1. Our demonstrated method can be readily applied in continuous variable QKD. (C) 2017 The Japan Society of Applied Physics
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Performance of continuous variable quantum key distribution system at different detector bandwidth
    Tang, X.
    Kumar, R.
    Ren, S.
    Wonfor, A.
    Penty, R. V.
    White, I. H.
    OPTICS COMMUNICATIONS, 2020, 471
  • [42] Feasibility of satellite-to-ground continuous-variable quantum key distribution
    Dequal, Daniele
    Vidarte, Luis Trigo
    Rodriguez, Victor Roman
    Vallone, Giuseppe
    Villoresi, Paolo
    Leverrier, Anthony
    Diamanti, Eleni
    NPJ QUANTUM INFORMATION, 2021, 7 (01)
  • [43] Post-processing optimization for continuous-variable quantum key distribution
    Gyongyosi, Laszlo
    THEORETICAL COMPUTER SCIENCE, 2021, 893 : 146 - 158
  • [44] Overview of device-independent continuous-variable quantum key distribution
    Goncharov, Roman
    Bolychev, Egor
    Vorontsova, Irina
    Samsonov, Eduard
    Egorov, Vladimir
    NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS, 2022, 13 (03): : 290 - 298
  • [45] Continuous-variable quantum key distribution in a multi-way setting
    Papanastasiou, Panagiotis
    Pirandola, Stefano
    PHOTONICS FOR QUANTUM 2022, 2022, 12243
  • [46] Fundamental Finite Key Limits for Information Reconciliation in Quantum Key Distribution
    Tomamichel, Marco
    Martinez-Mateo, Jesus
    Pacher, Christoph
    Elkouss, David
    2014 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2014, : 1469 - 1473
  • [47] Indoor channel modeling for continuous variable quantum key distribution in the terahertz band
    He, Yuqian
    Mao, Yiyu
    Huang, Duan
    Liao, Qin
    Guo, Ying
    OPTICS EXPRESS, 2020, 28 (22): : 32386 - 32402
  • [48] Finite-size analysis of a continuous-variable quantum key distribution
    Leverrier, Anthony
    Grosshans, Frederic
    Grangier, Philippe
    PHYSICAL REVIEW A, 2010, 81 (06):
  • [49] Continuous-variable measurement-device-independent quantum key distribution
    Li, Zhengyu
    Zhang, Yi-Chen
    Xu, Feihu
    Peng, Xiang
    Guo, Hong
    PHYSICAL REVIEW A, 2014, 89 (05):
  • [50] Continuous-variable quantum key distribution based on photon addition operation*
    Chen, Xiao-Ting
    Zhang, Lu-Ping
    Chang, Shou-Kang
    Zhang, Huan
    Hu, Li-Yun
    CHINESE PHYSICS B, 2021, 30 (06)