High-efficiency reconciliation for continuous variable quantum key distribution

被引:30
作者
Bai, Zengliang [1 ,2 ]
Yang, Shenshen [1 ,2 ]
Li, Yongmin [1 ,2 ]
机构
[1] Shanxi Univ, Inst Optoelect, State Key Lab Quantum Opt & Quantum Opt Devices, Taiyuan 030006, Peoples R China
[2] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Peoples R China
基金
中国国家自然科学基金;
关键词
PARITY-CHECK CODES; INFORMATION; SECURITY; DESIGN;
D O I
10.7567/JJAP.56.044401
中图分类号
O59 [应用物理学];
学科分类号
摘要
Quantum key distribution (QKD) is the most mature application of quantum information technology. Information reconciliation is a crucial step in QKD and significantly affects the final secret key rates shared between two legitimate parties. We analyze and compare various construction methods of low-density parity-check (LDPC) codes and design high-performance irregular LDPC codes with a block length of 10(6). Starting from these good codes and exploiting the slice reconciliation technique based on multilevel coding and multistage decoding, we realize high-efficiency Gaussian key reconciliation with efficiency higher than 95% for signal-to-noise ratios above 1. Our demonstrated method can be readily applied in continuous variable QKD. (C) 2017 The Japan Society of Applied Physics
引用
收藏
页数:5
相关论文
共 39 条
[1]  
[Anonymous], 1984, P IEEE INT C COMP, DOI DOI 10.1016/J.TCS.2014.05.025
[2]   High-efficiency Gaussian key reconciliation in continuous variable quantum key distribution [J].
Bai, ZengLiang ;
Wang, XuYang ;
Yang, ShenShen ;
Li, YongMin .
SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2016, 59 (01) :1-5
[3]   LDPC-based Gaussian key reconciliation [J].
Bloch, Matthieu ;
Thangaraj, Andrew ;
McLaughlin, Steven W. ;
Merolla, Jean-Marc .
2006 IEEE INFORMATION THEORY WORKSHOP, 2006, :116-+
[4]   Quantum information with continuous variables [J].
Braunstein, SL ;
van Loock, P .
REVIEWS OF MODERN PHYSICS, 2005, 77 (02) :513-577
[5]   On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit [J].
Chung, SY ;
Forney, GD ;
Richardson, TJ ;
Urbanke, R .
IEEE COMMUNICATIONS LETTERS, 2001, 5 (02) :58-60
[6]   Distributing Secret Keys with Quantum Continuous Variables: Principle, Security and Implementations [J].
Diamanti, Eleni ;
Leverrier, Anthony .
ENTROPY, 2015, 17 (09) :6072-6092
[7]   Continuous Variable Quantum Key Distribution: Finite-Key Analysis of Composable Security against Coherent Attacks [J].
Furrer, F. ;
Franz, T. ;
Berta, M. ;
Leverrier, A. ;
Scholz, V. B. ;
Tomamichel, M. ;
Werner, R. F. .
PHYSICAL REVIEW LETTERS, 2012, 109 (10)
[8]   Reverse-reconciliation continuous-variable quantum key distribution based on the uncertainty principle [J].
Furrer, Fabian .
PHYSICAL REVIEW A, 2014, 90 (04)
[9]   Quantum cryptography [J].
Gisin, N ;
Ribordy, GG ;
Tittel, W ;
Zbinden, H .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :145-195
[10]   Quantum key distribution using gaussian-modulated coherent states [J].
Grosshans, F ;
Van Assche, G ;
Wenger, J ;
Brouri, R ;
Cerf, NJ ;
Grangier, P .
NATURE, 2003, 421 (6920) :238-241