Destructive power series long-term survival model with complex activation schemes

被引:0
作者
Gallardo, Diego I. [1 ]
Bolfarine, Heleno [2 ]
Pedroso-de-Lima, Antonio C. [2 ]
Romeo, Jose S. [3 ,4 ]
机构
[1] Univ Atacama, Fac Ingn, Dept Matemat, Copiapo, Chile
[2] Univ Sao Paulo, Inst Math & Stat, Sao Paulo, Brazil
[3] Massey Univ, Coll Hlth, SHORE, Palmerston North, New Zealand
[4] Massey Univ, Coll Hlth, Whariki Res Ctr, Palmerston North, New Zealand
关键词
Cure rate models; Competing risks; Power series distribution; CURE RATE MODEL; LATENT ACTIVATION; REGRESSION-MODEL;
D O I
10.4310/SII.2019.v12.n4.a6
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
A new destructive cure rate model is introduced based on a family of power series distribution for the number of concurrent causes related to the event of interest. A mixture of first and last activation schemes is considered. For parameter estimation a classical approach based on maximum likelihood methodology is implemented. The performance of estimation procedure is evaluated based on a small scale simulation study. The model is also considered on a real data example, involving congestive heart failure patients.
引用
收藏
页码:561 / 571
页数:11
相关论文
共 19 条
[1]   SURVIVAL CURVE FOR CANCER PATIENTS FOLLOWING TREATMENT [J].
BERKSON, J ;
GAGE, RP .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1952, 47 (259) :501-515
[2]   Long-term survival models with latent activation under a flexible family of distributions [J].
Cancho, Vicente G. ;
de Castro, Mario ;
Dey, Dipak K. .
BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2013, 27 (04) :585-600
[3]   The destructive negative binomial cure rate model with a latent activation scheme [J].
Cancho, Vicente G. ;
Bandyopadhyay, Dipankar ;
Louzada, Francisco ;
Bao Yiqi .
STATISTICAL METHODOLOGY, 2013, 13 :48-68
[4]   The Power Series Cure Rate Model: An Application to a Cutaneous Melanoma Data [J].
Cancho, Vicente G. ;
Louzada, Francisco ;
Ortega, Edwin M. .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2013, 42 (03) :586-602
[5]   The Geometric Birnbaum-Saunders regression model with cure rate [J].
Cancho, Vicente G. ;
Louzada, Francisco ;
Barriga, Gladys D. C. .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (04) :993-1000
[6]   A new Bayesian model for survival data with a surviving fraction [J].
Chen, MH ;
Ibrahim, JG ;
Sinha, D .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1999, 94 (447) :909-919
[7]   Flexible cure rate modeling under latent activation schemes [J].
Cooner, Freda ;
Banerjee, Sudipto ;
Carlin, Bradley P. ;
Sinha, Debajyoti .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2007, 102 (478) :560-572
[8]   A model with long-term survivors: negative binomial Birnbaum-Saunders [J].
Cordeiro, Gauss M. ;
Cancho, Vicente G. ;
Ortega, Edwin M. M. ;
Barriga, Gladys D. C. .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2016, 45 (05) :1370-1387
[9]   Bayesian regression analysis with scale mixtures of normals [J].
Fernández, C ;
Steel, MFJ .
ECONOMETRIC THEORY, 2000, 16 (01) :80-101
[10]   A clustering cure rate model with application to a sealantstudy [J].
Gallardo, Diego I. ;
Bolfarine, Heleno ;
Pedroso-de-Lima, Atonio Carlos .
JOURNAL OF APPLIED STATISTICS, 2017, 44 (16) :2949-2962