Quantum Behavior of Water Protons in Protein Hydration Shell

被引:15
作者
Pagnotta, S. E. [2 ]
Bruni, F. [1 ,3 ]
Senesi, R. [4 ,5 ]
Pietropaolo, A. [6 ,7 ]
机构
[1] Univ Rome Tre, Dept Fis E Amaldi, Rome, Italy
[2] CSIC UPV EHU, Ctr Mixto, Ctr Fis Mat, Donostia San Sebastian, Spain
[3] Univ Rome Tre, CNISM CNR, Rome, Italy
[4] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy
[5] Univ Roma Tor Vergata, Ctr NAST Nanosci & Nanotecnol & Strumentaz, I-00173 Rome, Italy
[6] Univ Milano Bicocca, Dipartimento Fis, Milan, Italy
[7] Univ Milano Bicocca, CNISM CNR, Milan, Italy
关键词
ENZYME DYNAMICS; TIME; FLUCTUATIONS; DEPENDENCE; TRANSITION; CATALYSIS; LYSOZYME; BARRIER; SOLVENT;
D O I
10.1016/j.bpj.2008.10.062
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Quantum effects on the water proton dynamics over the surface of a hydrated protein are measured by means of broadband dielectric spectroscopy and deep inelastic neutron scattering. Dielectric spectroscopy indicates a reduced energy barrier for a hydrogenated protein sample compared to a deuterated one, along with a large and temperature-dependent isotopic ratio, in good agreement with theoretical studies. Recent deep inelastic neutron scattering data have been reanalyzed, and now show that the momentum distribution of water protons reflects a characteristic delocalization at ambient temperatures. These experimental findings might have far-reaching implications for enzymatic catalysis involving proton transfer processes, as in the case of the lysozyme protein studied in this report.
引用
收藏
页码:1939 / 1943
页数:5
相关论文
共 50 条
  • [31] Hydration shell effects in the relaxation dynamics of photoexcited Fe-II complexes in water
    Nalbach, P.
    Achner, A. J. A.
    Frey, M.
    Grosser, M.
    Bressler, C.
    Thorwart, M.
    JOURNAL OF CHEMICAL PHYSICS, 2014, 141 (04)
  • [32] Dipolar Nanodomains in Protein Hydration Shells
    Martin, Daniel R.
    Matyushov, Dmitry V.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2015, 6 (03): : 407 - 412
  • [33] System Size Dependence of Hydration-Shell Occupancy and Its Implications for Assessing the Hydrophobic and Hydrophilic Contributions to Hydration
    Asthagiri, Dilipkumar
    Tomar, Dheeraj Singh
    JOURNAL OF PHYSICAL CHEMISTRY B, 2020, 124 (05) : 798 - 806
  • [34] Coupled thermal fluctuations of proteins and protein hydration water on the picosecond timescale
    Paciaroni, A.
    Orecchini, A.
    Cornicchi, E.
    Marconi, M.
    Petrillo, C.
    Haertlein, M.
    Moulin, M.
    Sacchetti, F.
    PHILOSOPHICAL MAGAZINE, 2008, 88 (33-35) : 4071 - 4077
  • [35] Intermediate Structure and Slow Hydration Water Dynamics in Protein Folding Process
    Gao Meng
    Yao Xin-Qiu
    She Zhen-Su
    Liu Zhi-Rong
    Zhu Huai-Qiu
    ACTA PHYSICO-CHIMICA SINICA, 2010, 26 (07) : 1998 - 2006
  • [36] Peculiarities of the Dynamical Hydration Shell of Native Conformation Protein Using a Bovine Serum Albumin Example
    Penkov, Nikita V.
    APPLIED SPECTROSCOPY, 2024, 78 (10) : 1051 - 1061
  • [37] Thermal stability of the hydrogen-bonded water network in the hydration shell of islet amyloid polypeptide
    Brovchenko, I.
    Andrews, M. N.
    Oleinikova, A.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2011, 23 (15)
  • [38] Dynamical Transitions at Low Temperatures in the Nearest Hydration Shell of Phospholipid Bilayers
    Syryamina, V. N.
    Dzuba, S. A.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2017, 121 (05) : 1026 - 1032
  • [39] Resolving anisotropic distributions of correlated vibrational motion in protein hydration water
    Heyden, Matthias
    JOURNAL OF CHEMICAL PHYSICS, 2014, 141 (22)
  • [40] Hydration and temperature interdependence of protein picosecond dynamics
    Lipps, Ferdinand
    Levy, Seth
    Markelz, A. G.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (18) : 6375 - 6381