THE OBSTACLE PROBLEM FOR QUASILINEAR STOCHASTIC PDES: ANALYTICAL APPROACH

被引:16
作者
Denis, Laurent [1 ]
Matoussi, Anis [2 ,3 ]
Zhang, Jing [1 ]
机构
[1] Univ Evry Val dEssonne, Lab Anal & Probabil, F-91037 Evry, France
[2] Univ Maine, Lab Manceau Math, Federat Rech 2962, CNRS Math Pays de Loire, F-72085 Le Mans 9, France
[3] Ecole Polytech, CMAP, Palaiseau, France
关键词
Parabolic potential; regular measure; stochastic partial differential equations; obstacle problem; penalization method; Ito's formula; comparison theorem; space time white noise; PARTIAL-DIFFERENTIAL-EQUATIONS; SPDES; REFLECTION;
D O I
10.1214/12-AOP805
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove an existence and uniqueness result for quasilinear Stochastic PDEs with obstacle (OSPDE in short). Our method is based on analytical technics coming from the parabolic potential theory. The solution is expressed as a pair (u, v) where u is a predictable continuous process which takes values in a proper Sobolev space and v is a random regular measure satisfying the minimal Skohorod condition.
引用
收藏
页码:865 / 905
页数:41
相关论文
共 21 条
  • [1] [Anonymous], APPL INEQUATIONS VAR
  • [2] [Anonymous], 1968, TRAVAUX RECHERCHES M
  • [3] ARONSON D. G., 1963, B AM MATH SOC, V69, P841
  • [4] Aronson D.G., 1968, Ann. Scuola Norm. Sup. Pisa, V22, P607
  • [5] BALLY V., 2004, REFLECTED BSDES PDES
  • [6] CHARRIER P, 1975, CR ACAD SCI A MATH, V281, P621
  • [7] Lp estimates for the uniform norm of solutions of quasilinear SPDE's
    Denis, L
    Matoussi, A
    Stoica, L
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2005, 133 (04) : 437 - 463
  • [8] A general analytical result for non-linear SPDE's and applications
    Denis, L
    Stoica, L
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2004, 9 : 674 - 709
  • [9] Denis L, 2004, BERNOULLI, V10, P783
  • [10] WHITE-NOISE DRIVEN SPDES WITH REFLECTION
    DONATIMARTIN, C
    PARDOUX, E
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 1993, 95 (01) : 1 - 24