Multiscale entropy analysis of resting-state magnetoencephalogram with tensor factorisations in Alzheimer's disease

被引:34
|
作者
Escudero, Javier [1 ]
Acar, Evrim [2 ]
Fernandez, Alberto [3 ,4 ,5 ,6 ]
Bro, Rasmus [2 ]
机构
[1] Univ Edinburgh, Sch Engn, Inst Digital Commun, Edinburgh EH9 3FG, Midlothian, Scotland
[2] Univ Copenhagen, Fac Sci, DK-1958 Frederiksberg C, Denmark
[3] Univ Complutense Madrid, Dept Psiquiatria & Psicol Med, Madrid, Spain
[4] Univ Complutense Madrid, Ctr Biomed Technol, Lab Cognit & Computat Neurosci, E-28040 Madrid, Spain
[5] Tech Univ Madrid, Madrid, Spain
[6] San Carlos Univ Hosp, Inst Sanitary Invest IdISSC, Madrid, Spain
关键词
Alzheimer's disease; Brain activity; Complexity; Multiway analysis; PARAFAC; PARAFAC2; TIME-SERIES; EEG COMPLEXITY; DECOMPOSITIONS; MEG; INFORMATION; DYNAMICS;
D O I
10.1016/j.brainresbull.2015.05.001
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Tensor factorisations have proven useful to model amplitude and spectral information of brain recordings. Here, we assess the usefulness of tensor factorisations in the multiway analysis of other brain signal features in the context of complexity measures recently proposed to inspect multiscale dynamics. We consider the "refined composite multiscale entropy" (rcMSE), which computes entropy "profiles" showing levels of physiological complexity over temporal scales for individual signals. We compute the rcMSE of resting-state magnetoencephalogram (MEG) recordings from 36 patients with Alzheimer's disease and 26 control subjects. Instead of traditional simple visual examinations, we organise the entropy profiles as a three-way tensor to inspect relationships across temporal and spatial scales and subjects with multiway data analysis techniques based on PARAFAC and PARAFAC2 factorisations. A PARAFAC2 model with two factors was appropriate to account for the interactions in the entropy tensor between temporal scales and MEG channels for all subjects. Moreover, the PARAFAC2 factors had information related to the subjects' diagnosis, achieving a cross-validated area under the ROC curve of 0.77. This confirms the suitability of tensor factorisations to represent electrophysiological brain data efficiently despite the unsupervised nature of these techniques. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:136 / 144
页数:9
相关论文
共 50 条
  • [41] Tau and Amyloid Relationships with Resting-state Functional Connectivity in Atypical Alzheimer's Disease
    Sintini, Irene
    Graff-Radford, Jonathan
    Jones, David T.
    Botha, Hugo
    Martin, Peter R.
    Machulda, Mary M.
    Schwarz, Christopher G.
    Senjem, Matthew L.
    Gunter, Jeffrey L.
    Jack, Clifford R., Jr.
    Lowe, Val J.
    Josephs, Keith A.
    Whitwell, Jennifer L.
    CEREBRAL CORTEX, 2021, 31 (03) : 1693 - 1706
  • [42] Resting-State Functional Connectivity Predicts Cognitive Impairment Related to Alzheimer's Disease
    Lin, Qi
    Rosenberg, Monica D.
    Yoo, Kwangsun
    Hsu, Tiffany W.
    O'Connell, Thomas P.
    Chun, Marvin M.
    FRONTIERS IN AGING NEUROSCIENCE, 2018, 10
  • [43] Decreased functional connectivity of the amygdala in Alzheimer's disease revealed by resting-state fMRI
    Yao, Hongxiang
    Liu, Yong
    Zhou, Bo
    Zhang, Zengqiang
    An, Ningyu
    Wang, Pan
    Wang, Luning
    Zhang, Xi
    Jiang, Tianzi
    EUROPEAN JOURNAL OF RADIOLOGY, 2013, 82 (09) : 1531 - 1538
  • [44] Disruption of Semantic Network in Mild Alzheimer's Disease Revealed by Resting-State fMRI
    Mascali, Daniele
    DiNuzzo, Mauro
    Serra, Laura
    Mangia, Silvia
    Maraviglia, Bruno
    Bozzali, Marco
    Giove, Federico
    NEUROSCIENCE, 2018, 371 : 38 - 48
  • [45] Resting-State Network Alterations Differ between Alzheimer's Disease Atrophy Subtypes
    Rauchmann, Boris-Stephan
    Ersoezlue, Ersin
    Stoecklein, Sophia
    Keeser, Daniel
    Brosseron, Frederic
    Buerger, Katharina
    Dehent, Peter
    Dobisch, Laura
    Ertl-Wagner, Birgit
    Fliessbach, Klaus
    Haynes, John Dylan
    Heneka, Michael T.
    Incesoy, Enise I.
    Janowitz, Daniel
    Kilimann, Ingo
    Laake, Christoph
    Metzger, Coraline D.
    Munk, Matthias H.
    Peters, Oliver
    Priller, Josef
    Ramirez, Alfredo
    Roeske, Sandra
    Roy, Nina
    Scheffler, Klaus
    Schneider, Anja
    Spottke, Annika
    Spruth, Eike Jakob
    Teipl, Stefan
    Tscheuschler, Maike
    Vukovich, Ruth
    Wagner, Michael
    Wiltfang, Jens
    Yakupov, Renat
    Duezel, Emrah
    Jessen, Frank
    Pernczky, Robert
    CEREBRAL CORTEX, 2021, 31 (11) : 4901 - 4915
  • [46] Effect of hypertension on the resting-state functional connectivity in patients with Alzheimer's disease (AD)
    Son, Sang Joon
    Kim, Jinna
    Lee, Eun
    Park, Jin Young
    Namkoong, Kee
    Hong, Chang Hyung
    Ku, Jeonghun
    Kim, Eosu
    Oh, Byoung Hoon
    ARCHIVES OF GERONTOLOGY AND GERIATRICS, 2015, 60 (01) : 210 - 216
  • [47] Altered functional connectivity in early Alzheimer's disease: A resting-state fMRI study
    Wang, Kun
    Liang, Meng
    Wang, Liang
    Tian, Lixia
    Zhang, Xinqing
    Li, Kuncheng
    Jiang, Tianzi
    HUMAN BRAIN MAPPING, 2007, 28 (10) : 967 - 978
  • [48] Sensitive and reproducible MEG resting-state metrics of functional connectivity in Alzheimer’s disease
    Deborah N. Schoonhoven
    Casper T. Briels
    Arjan Hillebrand
    Philip Scheltens
    Cornelis J. Stam
    Alida A. Gouw
    Alzheimer's Research & Therapy, 14
  • [49] Graph Theory Analysis Reveals Resting-State Compensatory Mechanisms in Healthy Aging and Prodromal Alzheimer's Disease
    Behfar, Qumars
    Behfar, Stefan Kambiz
    von Reutern, Boris
    Richter, Nils
    Dronse, Julian
    Fassbender, Ronja
    Fink, Gereon R.
    Onur, Oezguer A.
    FRONTIERS IN AGING NEUROSCIENCE, 2020, 12 : 1 - 13
  • [50] Differentiation of claustrum resting-state functional connectivity in healthy aging, Alzheimer's disease, and Parkinson's disease
    Ayyildiz, Sevilay
    Velioglu, Halil Aziz
    Ayyildiz, Behcet
    Sutcubasi, Bernis
    Hanoglu, Lutfu
    Bayraktaroglu, Zubeyir
    Yildirim, Suleyman
    Atasever, Alper
    Yulug, Burak
    HUMAN BRAIN MAPPING, 2023, 44 (04) : 1741 - 1750