AIRWAY LABELING USING A HIDDEN MARKOV TREE MODEL

被引:0
|
作者
Ross, James C. [1 ,2 ,3 ]
Diaz, Alejandro A. [4 ]
Okajima, Yuka [5 ]
Wassermann, Demian [2 ]
Washko, George R. [4 ]
Dy, Jennifer [6 ]
Estepar, Raul San Jose [2 ,3 ,5 ]
机构
[1] Brigham & Womens Hosp, Channing Lab, Boston, MA 02115 USA
[2] Brigham & Womens Hosp, Surg Planning Lab, Boston, MA 02115 USA
[3] Brigham & Womens Hosp, Lab Math Imaging, Boston, MA 02115 USA
[4] Brigham & Womens Hosp, Div Pulm & Crit Care, Boston, MA 02115 USA
[5] Brigham & Womens Hosp, Dept Radiol, Boston, MA 02115 USA
[6] Northeastern Univ, ECE Dept, Boston, MA 02115 USA
来源
2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI) | 2014年
关键词
OBSTRUCTIVE PULMONARY-DISEASE; EMPHYSEMA;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We present a novel airway labeling algorithm based on a Hidden Markov Tree Model (HMTM). We obtain a collection of discrete points along the segmented airway tree using particles sampling [1] and establish topology using Kruskal's minimum spanning tree algorithm. Following this, our HMTM algorithm probabilistically assigns labels to each point. While alternative methods label airway branches out to the segmental level, we describe a general method and demonstrate its performance out to the subsubsegmental level (two generations further than previously published approaches). We present results on a collection of 2 5 computed tomography (CT) datasets taken from a Chronic Obstructive Pulmonary Disease (COPD) study.
引用
收藏
页码:554 / 558
页数:5
相关论文
共 50 条
  • [31] Speckle reduction for remote-sensing images using contextual hidden Markov tree model
    Shih, MY
    Tseng, DC
    IGARSS 2003: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS I - VII, PROCEEDINGS: LEARNING FROM EARTH'S SHAPES AND SIZES, 2003, : 1663 - 1665
  • [32] Deriving representative reservoir operation rules using a hidden Markov-decision tree model
    Zhao, Qiankun
    Cai, Ximing
    ADVANCES IN WATER RESOURCES, 2020, 146
  • [33] Dual-tree complex wavelet hidden Markov tree model for image denoising
    Yan, F.-X.
    Peng, S.-L.
    Cheng, L.-Z.
    ELECTRONICS LETTERS, 2007, 43 (18) : 973 - 975
  • [34] Contextual Hidden Markov Tree Model for the Dual-Tree Complex Wavelet Transform
    Lou, Shuai
    Ding, Zhenliang
    Yuan, Feng
    Li, Jing
    PACIIA: 2008 PACIFIC-ASIA WORKSHOP ON COMPUTATIONAL INTELLIGENCE AND INDUSTRIAL APPLICATION, VOLS 1-3, PROCEEDINGS, 2008, : 1046 - 1050
  • [35] Tuberculosis Surveillance Using a Hidden Markov Model
    Rafei, A.
    Pasha, E.
    Orak, R. Jamshidi
    IRANIAN JOURNAL OF PUBLIC HEALTH, 2012, 41 (10) : 87 - 96
  • [36] Multiuser Detection Using Hidden Markov Model
    Chen, Fangjiong
    Kwong, Sam
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2009, 58 (01) : 107 - 115
  • [37] Video summarization using Hidden Markov Model
    Huang, CL
    Chang, CY
    INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY: CODING AND COMPUTING, PROCEEDINGS, 2001, : 473 - 477
  • [38] Attack Prediction using Hidden Markov Model
    Dass, Shuvalaxmi
    Datta, Prerit
    Namin, Akbar Siami
    2021 IEEE 45TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE (COMPSAC 2021), 2021, : 1695 - 1702
  • [39] Disease surveillance using a hidden Markov model
    Rochelle E Watkins
    Serryn Eagleson
    Bert Veenendaal
    Graeme Wright
    Aileen J Plant
    BMC Medical Informatics and Decision Making, 9
  • [40] Weather Forecasting Using Hidden Markov Model
    Khiatani, Diksha
    Ghose, Udayan
    2017 INTERNATIONAL CONFERENCE ON COMPUTING AND COMMUNICATION TECHNOLOGIES FOR SMART NATION (IC3TSN), 2017, : 220 - 225