Self-assembled cauliflower-like FeS2 anchored into graphene foam as free-standing anode for high-performance lithium-ion batteries

被引:127
作者
He, Jiarui [1 ]
Li, Qian [1 ]
Chen, Yuanfu [1 ]
Xu, Chen [1 ]
Zhou, Keren [1 ]
Wang, Xinqiang [1 ]
Zhang, Wanli [1 ]
Li, Yanrong [1 ]
机构
[1] Univ Elect Sci & Technol China, State Key Lab Elect Thin Films & Integrated Devic, Chengdu 610054, Peoples R China
基金
中国国家自然科学基金; 国家高技术研究发展计划(863计划);
关键词
SUPERIOR-CAPABILITY ANODE; DOPED GRAPHENE; CATHODE; MICROSPHERES; FABRICATION; NANOSHEETS; COMPOSITE; OXIDE; COS2; NANOCOMPOSITE;
D O I
10.1016/j.carbon.2016.12.001
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
For the first time, self-assembled cauliflower-like FeS2 anchored into three-dimensional graphene foams (3DGF-FeS2) are synthesized by one-pot hydrothermal method. Without polymeric binders, conductive additives, or metallic current collectors, the 3DGF-FeS2 composite can be directly used as freestanding and binder-free anode for lithium-ion batteries (LIBs), which demonstrates pronounced electrochemical performance: it exhibits a large initial capacity of 1251.3 mAh g(-1) and remains 1080.3 mAh g(-1) after 100 cycles at 0.2 C, which is much higher than the theoretical capacity (890 mAh g(-1)) of bare FeS2 bulk material; it delivers excellent high-rate performance with a capacity of 615.1 mAh g(-1) even at 5 A g(-1). The pronounced enhancement in electrochemical performance is mainly attributed to the synergistic effect of 3DGF matrix and the unique self-assembly architecture. The porous and conductive 3DGF network offers efficient channels for electron transfer and ionic diffusion and the self-assembled cauliflower -like architecture restrains the aggregation of FeS2 and enhance the stability of 3DGF-FeS2 by suppressing the volume expansion during cycling processes. The 3DGF-FeS2 is promising as superior capacity free-standing and binder-free anode for LIBs. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:111 / 116
页数:6
相关论文
共 45 条
[1]   A V2O5/Conductive-Polymer Core/Shell Nanobelt Array on Three-Dimensional Graphite Foam: A High-Rate, Ultrastable, and Freestanding Cathode for Lithium-Ion Batteries [J].
Chao, Dongliang ;
Xia, Xinhui ;
Liu, Jilei ;
Fan, Zhanxi ;
Ng, Chin Fan ;
Lin, Jianyi ;
Zhang, Hua ;
Shen, Ze Xiang ;
Fan, Hong Jin .
ADVANCED MATERIALS, 2014, 26 (33) :5794-5800
[2]   Ionic Liquid Enabled FeS2 for High-Energy-Density Lithium-Ion Batteries [J].
Evans, Tyler ;
Piper, Daniela Molina ;
Kim, Seul Cham ;
Han, Sang Sub ;
Bhat, Vinay ;
Oh, Kyu Hwan ;
Lee, Se-Hee .
ADVANCED MATERIALS, 2014, 26 (43) :7386-7392
[3]   Towards Scalable Binderless Electrodes: Carbon Coated Silicon Nanofiber Paper via Mg Reduction of Electrospun SiO2 Nanofibers [J].
Favors, Zachary ;
Bay, Hamed Hosseini ;
Mutlu, Zafer ;
Ahmed, Kazi ;
Ionescu, Robert ;
Ye, Rachel ;
Ozkan, Mihrimah ;
Ozkan, Cengiz S. .
SCIENTIFIC REPORTS, 2015, 5
[4]   Reduced Graphene Oxide Wrapped FeS Nanocomposite for Lithium-Ion Battery Anode with Improved Performance [J].
Fei, Ling ;
Lin, Qianglu ;
Yuan, Bin ;
Chen, Gen ;
Xie, Pu ;
Li, Yuling ;
Xu, Yun ;
Deng, Shuguang ;
Smirnov, Sergei ;
Luo, Hongmei .
ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (11) :5330-5335
[5]   Three-dimensional CoS2/RGO hierarchical architecture as superior-capability anode for lithium ion batteries [J].
Fu, Fei ;
Chen, Yuanfu ;
Li, Pingjian ;
He, Jiarui ;
Wang, Zegao ;
Lin, Wei ;
Zhang, Wanli .
RSC ADVANCES, 2015, 5 (88) :71790-71795
[6]   V2O5 quantum dots/graphene hybrid nanocomposite with stable cyclability for advanced lithium batteries [J].
Han, Chunhua ;
Yan, Mengyu ;
Mai, Liqiang ;
Tian, Xiaocong ;
Xu, Lin ;
Xu, Xu ;
An, Qinyou ;
Zhao, Yunlong ;
Ma, Xinyu ;
Xie, Junlin .
NANO ENERGY, 2013, 2 (05) :916-922
[7]  
He J., RSC ADV, V5
[8]   Synthesis and electrochemical properties of graphene-modified LiCo1/3Ni1/3Mn1/3O2 cathodes for lithium ion batteries [J].
He, Jia-rui ;
Chen, Yuan-fu ;
Li, Ping-jian ;
Wang, Ze-gao ;
Qi, Fei ;
Liu, Jing-bo .
RSC ADVANCES, 2014, 4 (05) :2568-2572
[9]   Wrinkled sulfur@ graphene microspheres with high sulfur loading as superior-capacity cathode for LieS batteries [J].
He, Jiarui ;
Zhou, Keren ;
Chen, Yuanfu ;
Xu, Chen ;
Lin, Jie ;
Zhang, Wanli .
MATERIALS TODAY ENERGY, 2016, 1-2 :11-16
[10]   Three-Dimensional CNT/Graphene-Li2S Aerogel as Freestanding Cathode for High-Performance Li-S Batteries [J].
He, Jiarui ;
Chen, Yuanfu ;
Lv, Weigiang ;
Wen, Kechun ;
Xu, Chen ;
Zhang, Wanli ;
Qin, Wu ;
He, Weidong .
ACS ENERGY LETTERS, 2016, 1 (04) :820-826