STABILITY OF CAUCHY ADDITIVE FUNCTIONAL EQUATION IN FUZZY BANACH SPACES

被引:8
作者
Kim, Hark-Mahn [1 ]
Chang, Ick-Soon [1 ]
Son, Eunyoung [1 ]
机构
[1] Chungnam Natl Univ, Dept Math, Taejon 305764, South Korea
来源
MATHEMATICAL INEQUALITIES & APPLICATIONS | 2013年 / 16卷 / 04期
基金
新加坡国家研究基金会;
关键词
Fuzzy Banach space; Cauchy additive functional equation; Hyers-Ulam stability; fixed point alternative;
D O I
10.7153/mia-16-87
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we prove the generalized Hyers-Ulam stability of the following Cauchy additive functional equation f(x-y/n + z) + f(y-z/n + x) + f(z-x/n + y ) = f(x + y + z) in fuzzy Banach spaces for any fixed nonzero integer n.
引用
收藏
页码:1123 / 1136
页数:14
相关论文
共 23 条
[1]  
ADARIU LC, 2003, J INEQUAL PURE APPL, V4
[2]  
Aoki T., 1950, J MATH SOC JAPAN, V2, P64, DOI [10.2969/jmsj/00210064, DOI 10.2969/JMSJ/00210064]
[3]   Fuzzy bounded linear operators [J].
Bag, T ;
Samanta, SK .
FUZZY SETS AND SYSTEMS, 2005, 151 (03) :513-547
[4]  
Bag T., 2003, J FUZZY MATH, V11, P687
[5]  
Cheng S. C., 1994, B CALCUTTA MATH SOC, V86, P429
[6]   FINITE DIMENSIONAL FUZZY NORMED LINEAR-SPACE [J].
FELBIN, C .
FUZZY SETS AND SYSTEMS, 1992, 48 (02) :239-248
[7]   A GENERALIZATION OF THE HYERS-ULAM-RASSIAS STABILITY OF APPROXIMATELY ADDITIVE MAPPINGS [J].
GAVRUTA, P .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 184 (03) :431-436
[8]   Generalized contraction mapping principles in probabilistic metric spaces [J].
Hadzic, O ;
Pap, E ;
Radu, V .
ACTA MATHEMATICA HUNGARICA, 2003, 101 (1-2) :131-148
[9]   On the stability of the linear functional equation [J].
Hyers, DH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1941, 27 :222-224
[10]  
Isac G., 1996, Int. J. Math. Math. Sci, V19, P219, DOI [10.1155/S0161171296000324, DOI 10.1155/S0161171296000324]