Resonant Cavity Enhanced Photodiodes in the Short-Wave Infrared for Spectroscopic Detection

被引:3
作者
Bainbridge, Andrew [1 ]
Mamic, Katarina [1 ]
Hanks, Laura A. [1 ]
Al-Saymari, Furat [1 ]
Craig, Adam P. [1 ]
Marshall, Andrew R. J. [1 ]
机构
[1] Univ Lancaster, Dept Phys, Lancaster LA1 4YW, England
基金
英国工程与自然科学研究理事会;
关键词
Temperature measurement; Cavity resonators; Detectors; Sugar; Absorption; Temperature dependence; Remote sensing; spectroscopy; infrared detectors; photodetectors; INAS;
D O I
10.1109/LPT.2020.3025977
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The design, fabrication and characterization of resonant cavity enhanced photodiodes for the short-wave infrared has been investigated. An InGaAsSb absorber and AlGaSb barrier were used in an nBn structure, within a Fabry-Perot cavity bounded by AlAsSb/GaSb DBR mirrors. The resonant cavity design produced a narrow response at 2.25 mu m, with a FWHM of similar to 26 nm and peak responsivity of 0.9 A/W. The photodiodes exhibited high specific detectivities and low leakage currents at 300 K - 5 x 10(10) cmHz(1/2)W(-1) and 0.2 mAcm(-2) respectively, with an applied bias voltage of -100 mV. A maximum specific detectivity of 1x10(11) cmHz(1/2)W(-1) was achieved at 275 K and the detector continued to perform well at high temperatures - at 350 K the peak specific detectivity was 3x10(9) cmHz(1/2)W(-1). The narrow resonant response of these detectors make them suitable for spectroscopic sensing, demonstrated by measurements of glucose concentrations in water. Concentrations as low as 1 % were discriminated, limited only by the associated electronic systems.
引用
收藏
页码:1369 / 1372
页数:4
相关论文
共 25 条
[2]   Review of biomedical optical imaging-a powerful, non-invasive, non-ionizing technology for improving in vivo diagnosis [J].
Balas, Costas .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2009, 20 (10)
[3]   Resonant-cavity infrared detector with five-quantum-well absorber and 34% external quantum efficiency at 4 μm [J].
Canedy, Chadwick L. ;
Bewley, William W. ;
Merritt, Charles D. ;
Kim, Chul Soo ;
Kim, Mijin ;
Warren, Michael V. ;
Jackson, Eric M. ;
Nolde, Jill A. ;
Affouda, C. A. ;
Aifer, Edward H. ;
Vurgaftman, Igor ;
Meyer, Jerry R. .
OPTICS EXPRESS, 2019, 27 (03) :3771-3781
[4]   Resonant cavity enhanced photodiodes on GaSb for the mid-wave infrared [J].
Craig, A. P. ;
Al-Saymari, F. ;
Jain, M. ;
Bainbridge, A. ;
Savich, G. R. ;
Golding, T. ;
Krier, A. ;
Wicks, G. W. ;
Marshall, A. R. .
APPLIED PHYSICS LETTERS, 2019, 114 (15)
[5]   Short-wave infrared barriode detectors using InGaAsSb absorption material lattice matched to GaSb [J].
Craig, A. P. ;
Jain, M. ;
Wicks, G. ;
Golding, T. ;
Hossain, K. ;
McEwan, K. ;
Howle, C. ;
Percy, B. ;
Marshall, A. R. J. .
APPLIED PHYSICS LETTERS, 2015, 106 (20)
[6]   The Economic Burden of Elevated Blood Glucose Levels in 2012: Diagnosed and Undiagnosed Diabetes, Gestational Diabetes Mellitus, and Prediabetes [J].
Dall, Timothy M. ;
Yang, Wenya ;
Halder, Pragna ;
Pang, Bo ;
Massoudi, Marjan ;
Wintfeld, Neil ;
Semilla, April P. ;
Franz, Jerry ;
Hogan, Paul F. .
DIABETES CARE, 2014, 37 (12) :3172-3179
[7]  
Donetsky D, 2004, AIP CONF PROC, V738, P320, DOI 10.1063/1.1841909
[8]   Extended-wavelength InGaAsSb infrared unipolar barrier detectors [J].
Hao, Hongyue ;
Wang, Guowei ;
Han, Xi ;
Jiang, Dongwei ;
Sun, Yaoyao ;
Guo, Chunyan ;
Xiang, Wei ;
Xu, Yingqiang ;
Niu, Zhichuan .
AIP ADVANCES, 2018, 8 (09)
[9]   Wearable sensors: modalities, challenges, and prospects [J].
Heikenfeld, J. ;
Jajack, A. ;
Rogers, J. ;
Gutruf, P. ;
Tian, L. ;
Pan, T. ;
Li, R. ;
Khine, M. ;
Kim, J. ;
Wang, J. ;
Kim, J. .
LAB ON A CHIP, 2018, 18 (02) :217-248
[10]   Lanthanide-based nanostructures for optical bioimaging: Small particles with large promise [J].
Hemmer, Eva ;
Vetrone, Fiorenzo ;
Soga, Kohei .
MRS BULLETIN, 2014, 39 (11) :960-964