Toward direct mapping of neuronal activity: MRI detection of ultraweak, transient magnetic fields changes

被引:132
作者
Bodurka, J
Bandettini, PA
机构
[1] NIMH, Telsa Funct Neuroimaging Facil 3, NIH, Bethesda, MD 20892 USA
[2] NIMH, Lab Brain & Cognit, Unit Funct Imaging Methods, NIH, Bethesda, MD 20892 USA
关键词
magnetic field; magnetic phase; neuronal activity; MRI; brain mapping;
D O I
10.1002/mrm.10159
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
A novel method based on selective detection of rapidly changing DeltaB(o), magnetic fields and suppression of slowly changing DeltaB(o), fields is presented. The ultimate goal of this work is to present a method that may allow detection of transient and subtle changes in B-o in cortical tissue associated with electrical currents produced by neuronal activity. The method involves the detection of NMR phase changes that occur during a single-shot spin-echo (SE) echo-planar sequence (EPI) echo time. SE EPI effectively rephases all changes in B-o that occur on a time scale longer than the echo time (TE) and amplifies all DeltaB(o) changes that occur during TE/2. The method was tested on a phantom that contains wires in which current can be modulated. The sensitivity and flexibility of the technique was demonstrated by modulation of the temporal position and duration of the stimuli-evoked transient magnetic field relative to the 180 RF pulse in the imaging sequence-requiring precise stimulus timing. Currently, with this method magnetic field changes as small as 2 x 10(-10) T (200 pT) and lasting for 40 msec can be detected. Implications for direct mapping of brain neuronal activity with MRI are discussed.
引用
收藏
页码:1052 / 1058
页数:7
相关论文
共 29 条
[1]   TIME COURSE EPI OF HUMAN BRAIN-FUNCTION DURING TASK ACTIVATION [J].
BANDETTINI, PA ;
WONG, EC ;
HINKS, RS ;
TIKOFSKY, RS ;
HYDE, JS .
MAGNETIC RESONANCE IN MEDICINE, 1992, 25 (02) :390-397
[2]   Current-induced magnetic resonance phase imaging [J].
Bodurka, J ;
Jesmanowicz, A ;
Hyde, JS ;
Xu, H ;
Estkowski, L ;
Li, SJ .
JOURNAL OF MAGNETIC RESONANCE, 1999, 137 (01) :265-271
[3]  
BODURKA J, 2000, P 8 ANN M ISMRM DENV, P1006
[4]   MAGNETOENCEPHALOGRAPHY - EVIDENCE OF MAGNETIC FIELDS PRODUCED BY ALPHA-RHYTHM CURRENTS [J].
COHEN, D .
SCIENCE, 1968, 161 (3843) :784-&
[5]   AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages [J].
Cox, RW .
COMPUTERS AND BIOMEDICAL RESEARCH, 1996, 29 (03) :162-173
[6]   Spatiotemporal mapping of brain activity by integration of multiple imaging modalities [J].
Dale, AM ;
Halgren, E .
CURRENT OPINION IN NEUROBIOLOGY, 2001, 11 (02) :202-208
[7]   MAPPING FUNCTION IN THE HUMAN BRAIN WITH MAGNETOENCEPHALOGRAPHY, ANATOMICAL MAGNETIC-RESONANCE-IMAGING, AND FUNCTIONAL MAGNETIC-RESONANCE-IMAGING [J].
GEORGE, JS ;
AINE, CJ ;
MOSHER, JC ;
SCHMIDT, DM ;
RANKEN, DM ;
SCHLITT, HA ;
WOOD, CC ;
LEWINE, JD ;
SANDERS, JA ;
BELLIVEAU, JW .
JOURNAL OF CLINICAL NEUROPHYSIOLOGY, 1995, 12 (05) :406-431
[8]   THE RICIAN DISTRIBUTION OF NOISY MRI DATA [J].
GUDBJARTSSON, H ;
PATZ, S .
MAGNETIC RESONANCE IN MEDICINE, 1995, 34 (06) :910-914
[9]   MAGNETOENCEPHALOGRAPHY - THEORY, INSTRUMENTATION, AND APPLICATIONS TO NONINVASIVE STUDIES OF THE WORKING HUMAN BRAIN [J].
HAMALAINEN, M ;
HARI, R ;
ILMONIEMI, RJ ;
KNUUTILA, J ;
LOUNASMAA, OV .
REVIEWS OF MODERN PHYSICS, 1993, 65 (02) :413-497
[10]   Timing of human cortical functions during cognition:: role of MEG [J].
Hari, R ;
Levänen, S ;
Raij, T .
TRENDS IN COGNITIVE SCIENCES, 2000, 4 (12) :455-462