Rigidity of gradient Einstein shrinkers

被引:48
作者
Catino, Giovanni [1 ,2 ]
Mazzieri, Lorenzo [3 ]
Mongodi, Samuele [3 ]
机构
[1] Politecn Milan, Dipartimento Matemat, I-20133 Milan, Italy
[2] Politecn Milan, Dipartimento Matemat, I-20133 Milan, Italy
[3] Scuola Normale Super Pisa, I-56126 Pisa, Italy
关键词
Einstein manifolds; Ricci solitons; Ricci flow; RICCI SOLITONS;
D O I
10.1142/S0219199715500467
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a perturbation of the Ricci solitons equation proposed in [J.-P. Bourguignon, Ricci curvature and Einstein metrics, in Global Differential Geometry and Global Analysis, Lecture Notes in Mathematics, Vol. 838 (Springer, Berlin, 1981), pp. 4263] and studied in [H.-D. Cao, Geometry of Ricci solitons, Chinese Ann. Math. Ser. B 27(2) (2006) 121-142] and we classify noncompact gradient shrinkers with bounded non-negative sectional curvature.
引用
收藏
页数:18
相关论文
共 14 条
[1]  
Besse A. L., 2008, EINSTEIN MANIFOLDS
[2]  
Bourguignon J.P., 1981, Global differential geometry and global analysis, P42
[3]  
Cao H.-D., 2008, SURVEYS DIFFERENTIAL, V12, P47
[4]   Geometry of Ricci solitons [J].
Cao, Huai-Dong .
CHINESE ANNALS OF MATHEMATICS SERIES B, 2006, 27 (02) :121-142
[5]  
Cao HD, 2010, J DIFFER GEOM, V85, P175
[6]   Gradient Einstein solitons [J].
Catino, Giovanni ;
Mazzieri, Lorenzo .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 132 :66-94
[7]  
Gilbarg D., 1977, GRUNDLEHREN DER MATH, V224
[8]   RICCI SOLITONS ON COMPACT 3-MANIFOLDS [J].
IVEY, T .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 1993, 3 (04) :301-307
[9]  
Morrey Jr C. B., 2008, MULTIPLE INTEGRALWS
[10]   Noncompact shrinking four solitons with nonnegative curvature [J].
Naber, Aaron .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2010, 645 :125-153