Rogue wave solutions of the nonlinear Schrodinger equation with variable coefficients

被引:8
|
作者
Liu, Changfu [1 ]
Li, Yan Yan [1 ]
Gao, Meiping [1 ]
Wang, Zeping [1 ]
Dai, Zhengde [2 ]
Wang, Chuanjian [3 ]
机构
[1] Wenshan Univ, Sch Math, Wenshan 663000, Peoples R China
[2] Yunnan Univ, Sch Math & Stat, Kunming 650091, Peoples R China
[3] Kunming Univ Sci & Technol, Sch Sci, Kunming 650031, Peoples R China
来源
PRAMANA-JOURNAL OF PHYSICS | 2015年 / 85卷 / 06期
关键词
Nonlinear Schrodinger equation; exp-function method; breather soliton; rogue wave;
D O I
10.1007/s12043-015-0954-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, a unified formula of a series of rogue wave solutions for the standard (1+1)-dimensional nonlinear Schrodinger equation is obtained through exp-function method. Further, by means of an appropriate transformation and previously obtained solutions, rogue wave solutions of the variable coefficient Schrodinger equation are also obtained. Two free functions of time t and several arbitrary parameters are involved to generate a large number of wave structures.
引用
收藏
页码:1063 / 1072
页数:10
相关论文
共 50 条
  • [21] Exact gray multi-soliton solutions for nonlinear Schrodinger equation with variable coefficients
    Yang, RC
    Hao, RY
    Li, L
    Shi, XJ
    Li, ZH
    Zhou, GS
    OPTICS COMMUNICATIONS, 2005, 253 (1-3) : 177 - 185
  • [22] A variety of nonautonomous complex wave solutions for the (2+1)-dimensional nonlinear Schrodinger equation with variable coefficients in nonlinear optical fibers
    Liu, Jian-Guo
    Osman, M. S.
    Wazwaz, Abdul-Majid
    OPTIK, 2019, 180 : 917 - 923
  • [23] The rogue wave of the nonlinear Schrodinger equation with self-consistent sources
    Huang, Yehui
    Jing, Hongqing
    Lin, Runliang
    Yao, Yuqin
    MODERN PHYSICS LETTERS B, 2018, 32 (30):
  • [24] Soliton and Rogue Wave Solution of the New Nonautonomous Nonlinear Schrodinger Equation
    Wang You-Ying
    He Jing-Song
    Li Yi-Shen
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2011, 56 (06) : 995 - 1004
  • [25] Kuznetsov-Ma rogue wave clusters of the nonlinear Schrodinger equation
    Alwashahi, Sarah
    Aleksic, Najdan B.
    Belic, Milivoj R.
    Nikolic, Stanko N.
    NONLINEAR DYNAMICS, 2023, 111 (13) : 12495 - 12509
  • [26] Analytical solutions and rogue waves in (3+1)-dimensional nonlinear Schrodinger equation
    Ma Zheng-Yi
    Ma Song-Hua
    CHINESE PHYSICS B, 2012, 21 (03)
  • [27] Rogue-wave solutions for a discrete Ablowitz-Ladik equation with variable coefficients for an electrical lattice
    Wu, Xiao-Yu
    Tian, Bo
    Yin, Hui-Min
    Du, Zhong
    NONLINEAR DYNAMICS, 2018, 93 (03) : 1635 - 1645
  • [28] Solitons of nonlinear Schrodinger equation with variable-coefficients and interaction
    Qian Cun
    Wang Liang-Liang
    Zhang Jie-Fang
    ACTA PHYSICA SINICA, 2011, 60 (06)
  • [29] An exact analytical solution to the nonlinear Schrodinger equation with variable coefficients
    Guo, Y
    Wen, SC
    Li, Y
    Qi, JX
    Wang, Q
    Optical Transmission, Switching, and Subsystem II, Pts 1 and 2, 2005, 5625 : 432 - 437
  • [30] A new approach to exact soliton solutions and soliton interaction for the nonlinear Schrodinger equation with variable coefficients
    Hao, RY
    Li, L
    Li, ZH
    Xue, WR
    Zhou, GS
    OPTICS COMMUNICATIONS, 2004, 236 (1-3) : 79 - 86