Nanofluidic structures with complex three-dimensional surfaces

被引:40
作者
Stavis, Samuel M. [1 ]
Strychalski, Elizabeth A. [2 ]
Gaitan, Michael [1 ]
机构
[1] Natl Inst Stand & Technol, Div Semicond Elect, Gaithersburg, MD 20899 USA
[2] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA
关键词
SILICON MEMS STRUCTURES; DNA ANALYSIS; MICROFLUIDIC STRUCTURES; NANOSLITS; LENGTH; NANOSTRUCTURES; LITHOGRAPHY; SEPARATION; MOLECULES; DYNAMICS;
D O I
10.1088/0957-4484/20/16/165302
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Nanofluidic devices have typically explored a design space of patterns limited by a single nanoscale structure depth. A method is presented here for fabricating nanofluidic structures with complex three-dimensional (3D) surfaces, utilizing a single layer of grayscale photolithography and standard integrated circuit manufacturing tools. This method is applied to construct nanofluidic devices with numerous (30) structure depths controlled from approximate to 10 to approximate to 620 nm with an average standard deviation of < 10 nm over distances of > 1 cm. A prototype 3D nanofluidic device is demonstrated that implements size exclusion of rigid nanoparticles and variable nanoscale confinement and deformation of biomolecules.
引用
收藏
页数:7
相关论文
共 31 条
  • [11] Ionic effects on the equilibrium dynamics of DNA confined in nanoslits
    Hsieh, Chih-Chen
    Balducci, Anthony
    Doyle, Patrick S.
    [J]. NANO LETTERS, 2008, 8 (06) : 1683 - 1688
  • [12] An experimental study of DNA rotational relaxation time in nanoslits
    Hsieh, Chih-Chen
    Balducci, Anthony
    Doyle, Patrick S.
    [J]. MACROMOLECULES, 2007, 40 (14) : 5196 - 5205
  • [13] A single-molecule barcoding system using nanoslits for DNA analysis
    Jo, Kyubong
    Dhingra, Dalia M.
    Odijk, Theo
    de Pablo, Juan J.
    Graham, Michael D.
    Runnheim, Rod
    Forrest, Dan
    Schwartz, David C.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (08) : 2673 - 2678
  • [14] Rapidly prototyped three-dimensional nanofluidic channel networks in glass substrates
    Ke, K
    Hasselbrink, EF
    Hunt, AJ
    [J]. ANALYTICAL CHEMISTRY, 2005, 77 (16) : 5083 - 5088
  • [15] Rapid three-dimensional manufacturing of microfluidic structures using a scanning laser system
    Li, B
    Yu, H
    Sharon, A
    Zhang, X
    [J]. APPLIED PHYSICS LETTERS, 2004, 85 (12) : 2426 - 2428
  • [16] Ion-beam sculpting at nanometre length scales
    Li, J
    Stein, D
    McMullan, C
    Branton, D
    Aziz, MJ
    Golovchenko, JA
    [J]. NATURE, 2001, 412 (6843) : 166 - 169
  • [17] Nanogap detector inside nanofluidic channel for fast real-time label-free DNA analysis
    Liang, Xiaogan
    Chou, Stephen Y.
    [J]. NANO LETTERS, 2008, 8 (05) : 1472 - 1476
  • [18] APPLICATION OF WHITE-LIGHT INTERFEROMETRY IN THIN-FILM MEASUREMENTS
    LIN, C
    SULLIVAN, RF
    [J]. IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1972, 16 (03) : 269 - &
  • [19] Nanofluidic structures for single biomolecule fluorescent detection
    Mannion, J. T.
    Craighead, H. G.
    [J]. BIOPOLYMERS, 2007, 85 (02) : 131 - 143
  • [20] Scaling theory of DNA confined in nanochannels and nanoslits
    Odijk, Theo
    [J]. PHYSICAL REVIEW E, 2008, 77 (06)