On the 2kth power mean of the character sums over short intervals

被引:15
作者
Xu, ZF [1 ]
Zhang, WP [1 ]
机构
[1] NW Univ Xian, Dept Math, Xian, Peoples R China
关键词
character sums; short intervals; 2kth power mean; asymptotic formula;
D O I
10.4064/aa121-2-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:149 / 160
页数:12
相关论文
共 40 条
[31]   Generalized quadratic Gauss sums and their 2mth power mean [J].
Cui, Dewang ;
Zhang, Wenpeng .
OPEN MATHEMATICS, 2024, 22 (01)
[32]   Power Moments of the Riesz Mean Error Term of Symmetric Square L-Function in Short Intervals [J].
Zhang, Rui ;
Han, Xue ;
Zhang, Deyu .
SYMMETRY-BASEL, 2020, 12 (12) :1-12
[33]   ON THE 2k-TH POWER MEAN OF L′/L(1, χ) WITH THE WEIGHT OF GAUSS SUMS [J].
Ren, Dongmei ;
Yi, Yuan .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 2009, 59 (03) :781-789
[34]   On the 2m-th power mean of Dirichlet L-functions with the weight of trigonometric sums [J].
Rong Ma ;
Junhuai Zhang ;
Yulong Zhang .
Proceedings - Mathematical Sciences, 2009, 119 :411-421
[35]   On the 2m-th power mean of Dirichlet L-functions with the weight of trigonometric sums [J].
Ma, Rong ;
Zhang, Junhuai ;
Zhang, Yulong .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2009, 119 (04) :411-421
[36]   A new sum analogous to quadratic Gauss sums and its 2k th power mean [J].
Du Xiancun ;
Li Xiaoxue .
Journal of Inequalities and Applications, 2014
[37]   The congruence x1x2 ≡ x3x4 (mod m) and mean values of character sums [J].
Cochrane, Todd ;
Shi, Sanying .
JOURNAL OF NUMBER THEORY, 2010, 130 (03) :767-785
[38]   Hybrid mean value of 2k-th power inversion of L-functions and general quartic Gauss sums [J].
Singh, Shikha ;
Tanti, Jagmohan .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2019, 129 (02)
[39]   On the 2k-th power mean of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{{L'}} {L}(1,\chi ) $$\end{document} with the weight of Gauss sums [J].
Dongmei Ren ;
Yuan Yi .
Czechoslovak Mathematical Journal, 2009, 59 (3) :781-789