A Fault Diagnosis Method for Rolling Bearings Based on Parameter Transfer Learning under Imbalance Data Sets

被引:14
|
作者
Peng, Cheng [1 ,2 ]
Li, Lingling [1 ]
Chen, Qing [1 ]
Tang, Zhaohui [2 ]
Gui, Weihua [2 ]
He, Jing [1 ]
机构
[1] Hunan Univ Technol, Sch Comp, Zhuzhou 412007, Peoples R China
[2] Cent South Univ, Sch Automat, Changsha 410083, Peoples R China
关键词
fault diagnosis; rolling bearings; unbalance samples; deep transfer learning;
D O I
10.3390/en14040944
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Fault diagnosis under the condition of data sets or samples with only a few fault labels has become a hot spot in the field of machinery fault diagnosis. To solve this problem, a fault diagnosis method based on deep transfer learning is proposed. Firstly, the discriminator of the generative adversarial network (GAN) is improved by enhancing its sparsity, and then adopts the adversarial mechanism to continuously optimize the recognition ability of the discriminator; finally, the parameter transfer learning (PTL) method is applied to transfer the trained discriminator to target domain to solve the fault diagnosis problem with only a small number of label samples. Experimental results show that this method has good fault diagnosis performance.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] A fault diagnosis method of rolling element bearings based on CEEMDAN
    Lei, Yaguo
    Liu, Zongyao
    Ouazri, Julien
    Lin, Jing
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2017, 231 (10) : 1804 - 1815
  • [22] A grey fault diagnosis method for rolling bearings based on EMD
    Wang, Q., 1600, Chinese Vibration Engineering Society (33):
  • [23] Method of fault diagnosis for rolling bearings based on Laplacian eigenmap
    College of Mechanical Engineering, Taiyuan University of Technology, Taiyuan
    030024, China
    J Vib Shock, 5 (128-134 and 144):
  • [24] Fault diagnosis method of rolling bearings based on VMD and MDSVM
    Qiao, MeiYing
    Tang, XiaXia
    Liu, YuXiang
    Yan, ShuHao
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (10) : 14521 - 14544
  • [25] Fault diagnosis method of rolling bearings based on VMD and MDSVM
    MeiYing Qiao
    XiaXia Tang
    YuXiang Liu
    ShuHao Yan
    Multimedia Tools and Applications, 2021, 80 : 14521 - 14544
  • [26] Network-combined broad learning and transfer learning: a new intelligent fault diagnosis method for rolling bearings
    Wang, Yujing
    Wang, Chao
    Kang, Shouqiang
    Xie, Jinbao
    Wang, Qingyan
    Mikulovich, V., I
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2020, 31 (11)
  • [27] Intelligent fault diagnosis of rolling bearings based on normalized CNN considering data imbalance and variable working conditions
    Zhao, Bo
    Zhang, Xianmin
    Li, Hai
    Yang, Zhuobo
    KNOWLEDGE-BASED SYSTEMS, 2020, 199
  • [28] A hybrid method for fault diagnosis of rolling bearings
    He, Yuchen
    Fang, Husheng
    Luo, Jiqing
    Pang, Pengfei
    Yin, Qin
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (12)
  • [29] A New Method of Fault Diagnosis in Rolling Bearings
    Liu Xiaozhi
    Li Haotong
    2019 4TH INTERNATIONAL CONFERENCE ON MECHANICAL, CONTROL AND COMPUTER ENGINEERING (ICMCCE 2019), 2019, : 120 - 123
  • [30] Fault Diagnosis of Rolling Bearings Using Deep Transfer Learning and Adaptive Weighting
    Jia F.
    Li S.
    Shen J.
    Ma J.
    Li N.
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2022, 56 (08): : 1 - 10