BANDLIMITED APPROXIMATIONS AND ESTIMATES FOR THE RIEMANN ZETA-FUNCTION

被引:10
作者
Carneiro, Emanuel [1 ,2 ]
Chirre, Andres [2 ]
Milinovich, Micah B. [3 ]
机构
[1] ICTP Abdus Salam Int Ctr Theoret Phys, Str Costiera 11, I-34151 Trieste, Italy
[2] IMPA Inst Nacl Matemat Pura & Aplicada, Estr Dona Castorina 110, BR-22460320 Rio De Janeiro, RJ, Brazil
[3] Univ Mississippi, Dept Math, University, MS 38677 USA
关键词
Riemann zeta-function; Riemann hypothesis; argument; critical strip; Beurling-Selberg extremal problem; extremal functions; Gaussian subordination; exponential type; EXTREMAL-FUNCTIONS; DE-BRANGES; ZEROS; ARGUMENT;
D O I
10.5565/PUBLMAT6321906
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we provide explicit upper and lower bounds for the argument of the Riemann zeta-function and its antiderivatives in the critical strip under the assumption of the Riemann hypothesis. This extends the previously known bounds for these quantities on the critical line (and sharpens the error terms in such estimates). Our tools come not only from number theory, but also from Fourier analysis and approximation theory. An important element in our strategy is the ability to solve a Fourier optimization problem with constraints, namely, the problem of majorizing certain real-valued even functions by bandlimited functions, optimizing the L-1- (R)-error. Deriving explicit formulae for the Fourier transforms of such optimal approximations plays a crucial role in our approach.
引用
收藏
页码:601 / 661
页数:61
相关论文
共 38 条
  • [1] [Anonymous], 2004, AM MATH SOC COLLOQ P, DOI [DOI 10.1090/COLL/053, 10.1090/coll/053]
  • [2] Bounding Sn(t) on the Riemann hypothesis
    Carneiro, Emanuel
    Chirre, Andres
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2018, 164 (02) : 259 - 283
  • [3] Hilbert spaces and the pair correlation of zeros of the Riemann zeta-function
    Carneiro, Emanuel
    Chandee, Vorrapan
    Littmann, Friedrich
    Milinovich, Micah B.
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2017, 725 : 143 - 182
  • [4] EXTREMAL FUNCTIONS IN DE BRANGES AND EUCLIDEAN SPACES, II
    Carneiro, Emanuel
    Littmann, Friedrich
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 2017, 139 (02) : 525 - 566
  • [5] On the argument of L-functions
    Carneiro, Emanuel
    Finder, Renan
    [J]. BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2015, 46 (04): : 601 - 620
  • [6] A note on the zeros of zeta and L-functions
    Carneiro, Emanuel
    Chandee, Vorrapan
    Milinovich, Micah B.
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2015, 281 (1-2) : 315 - 332
  • [7] Extremal problems in de Branges spaces: the case of truncated and odd functions
    Carneiro, Emanuel
    Goncalves, Felipe
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2015, 280 (1-2) : 17 - 45
  • [8] Extremal functions in de Branges and Euclidean spaces
    Carneiro, Emanuel
    Littmann, Friedrich
    [J]. ADVANCES IN MATHEMATICS, 2014, 260 : 281 - 349
  • [9] Bandlimited Approximations to the Truncated Gaussian and Applications
    Carneiro, Emanuel
    Littmann, Friedrich
    [J]. CONSTRUCTIVE APPROXIMATION, 2013, 38 (01) : 19 - 57
  • [10] Carneiro E, 2013, MATH ANN, V356, P939, DOI 10.1007/s00208-012-0876-z