On the Birch-Swinnerton-Dyer conjecture of elliptic curves ED:y2 = x3-D2x

被引:5
|
作者
Li, DL [1 ]
机构
[1] Sichuan Univ, Dept Math, Chengdu 610064, Peoples R China
[2] Columbia Univ, Dept Math, New York, NY 10027 USA
来源
ACTA MATHEMATICA SINICA-ENGLISH SERIES | 2000年 / 16卷 / 02期
关键词
elliptic curve; BSD conjecture; graph; 2-component;
D O I
10.1007/s101140050017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove in this paper that the BSD conjecture holds for a certain kind of elliptic curves.
引用
收藏
页码:229 / 236
页数:8
相关论文
共 46 条
  • [21] An exact upper bound estimate for the number of integer points on the elliptic curves y2 = x3 - pkx
    Gou, Su
    Li, Xiaoxue
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [22] An exact upper bound estimate for the number of integer points on the elliptic curves y2=x3−pkx
    Su Gou
    Xiaoxue Li
    Journal of Inequalities and Applications, 2014
  • [23] The upper bound estimate of the number of integer points on elliptic curves y2 = x3 + p2rx
    Zhang, Jin
    Li, Xiaoxue
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [24] ON QUADRATIC TWISTS OF ELLIPTIC CURVES y(2) = x(x - 1)(x - lambda)
    Dujella, Andrej
    Gusic, Ivica
    Lasic, Luka
    RAD HRVATSKE AKADEMIJE ZNANOSTI I UMJETNOSTI-MATEMATICKE ZNANOSTI, 2014, 18 (519): : 27 - 34
  • [25] A note on the Selmer group of the elliptic curve y2 = x3+Dx
    Goto, T
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2001, 77 (07) : 122 - 125
  • [26] On the rank of the elliptic curve y2 = x3 + kx.: II
    Kihara, S
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2004, 80 (04) : 24 - 25
  • [27] Rational Points of Elliptic Curve y2 = x3 + k3
    Wu, Xia
    Qin, Yan
    ALGEBRA COLLOQUIUM, 2018, 25 (01) : 133 - 138
  • [28] The Integral Points on the Elliptic Curve y2=3mx(x2-8)
    Fei, Wan
    Zhao, Jianhong
    2ND INTERNATIONAL CONFERENCE ON APPLIED MATHEMATICS, MODELLING, AND INTELLIGENT COMPUTING (CAMMIC 2022), 2022, 12259
  • [29] Integral points on the elliptic curve Epq: y2 = x3 + (pq − 12) x − 2(pq − 8)
    Teng Cheng
    Qingzhong Ji
    Hourong Qin
    Indian Journal of Pure and Applied Mathematics, 2019, 50 : 343 - 352
  • [30] The Mordell-Weil Bases for the Elliptic Curve y2 = x3 - m2x + m2
    Rout, Sudhansu Sekhar
    Juyal, Abhishek
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2021, 71 (04) : 1133 - 1147