On the Birch-Swinnerton-Dyer conjecture of elliptic curves ED:y2 = x3-D2x

被引:9
作者
Li, DL [1 ]
机构
[1] Sichuan Univ, Dept Math, Chengdu 610064, Peoples R China
[2] Columbia Univ, Dept Math, New York, NY 10027 USA
来源
ACTA MATHEMATICA SINICA-ENGLISH SERIES | 2000年 / 16卷 / 02期
关键词
elliptic curve; BSD conjecture; graph; 2-component;
D O I
10.1007/s101140050017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove in this paper that the BSD conjecture holds for a certain kind of elliptic curves.
引用
收藏
页码:229 / 236
页数:8
相关论文
共 12 条
[1]  
BIRCH BJ, 1965, J REINE ANGEW MATH, V218, P79
[2]  
Bondy J.A., 2008, GRAD TEXTS MATH
[3]  
CASSELS JWS, 1962, J REINE ANGEW MATH, V211
[4]  
FENG K, 1996, ACTA ARITHMETIC, V25, P1
[5]  
KOBLIT W, 1984, INTRO ELLIPTIC CURVE
[6]   RELATION BETWEEN 2-COMPONENT OF TATE-SAFAREVIC GROUP AND L(1) FOR CERTAIN ELLIPTIC CURVES [J].
RAZAR, MJ .
AMERICAN JOURNAL OF MATHEMATICS, 1974, 96 (01) :127-144
[7]   TATE-SHAFAREVICH GROUPS AND L-FUNCTIONS OF ELLIPTIC-CURVES WITH COMPLEX MULTIPLICATION [J].
RUBIN, K .
INVENTIONES MATHEMATICAE, 1987, 89 (03) :527-559
[8]   THE MAIN CONJECTURES OF IWASAWA THEORY FOR IMAGINARY QUADRATIC FIELDS [J].
RUBIN, K .
INVENTIONES MATHEMATICAE, 1991, 103 (01) :25-68
[9]  
Serre J.-P., 1973, Graduate Texts in Mathematics
[10]  
Silverman JH, 1986, The arithmetic of elliptic curves, DOI DOI 10.1007/978-1-4757-1920-8