Multi solitary waves for nonlinear Schrodinger equations

被引:87
作者
Martel, Yvan
Merle, Frank
机构
[1] Univ Versailles St Quentin Yvelines, Dept Math, F-78035 Versailles, France
[2] Univ Cergy Pontoise, Dept Math, F-95302 Cergy Pontoise, France
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2006年 / 23卷 / 06期
关键词
nonlinear Schrodinger equations; multi solitary waves; asymptotic behavior;
D O I
10.1016/j.anihpc.2006.01.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the nonlinear Schrodinger equation in R-d for any d >= 1, with a nonlinearity such that solitary waves exist and are stable. Let R-k (t, x) be K arbitrarily given solitary waves of the equation with different speeds nu(1), nu(2),...,nu(K). In this paper, we prove that there exists a solution u(t) of the equation such that lim (t -->+infinity)parallel to u(t) - Sigma(K)(k=1) R-k(t)parallel to(H1) = 0. (C) 2006 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:849 / 864
页数:16
相关论文
共 17 条
[11]  
MARTEL Y, IN PRESS DUKE MATH J
[13]   CONSTRUCTION OF SOLUTIONS WITH EXACTLY K-BLOW-UP POINTS FOR THE SCHRODINGER-EQUATION WITH CRITICAL NONLINEARITY [J].
MERLE, F .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 129 (02) :223-240
[14]  
Tsutsumi Y., 1987, FUNKC EKVACIOJ-SER I, V30, P115
[15]   LYAPUNOV STABILITY OF GROUND-STATES OF NONLINEAR DISPERSIVE EVOLUTION-EQUATIONS [J].
WEINSTEIN, MI .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1986, 39 (01) :51-67
[16]   MODULATIONAL STABILITY OF GROUND-STATES OF NONLINEAR SCHRODINGER-EQUATIONS [J].
WEINSTEIN, MI .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1985, 16 (03) :472-491
[17]  
ZAKHAROV VE, 1972, SOV PHYS JETP-USSR, V34, P62