Multi solitary waves for nonlinear Schrodinger equations

被引:87
作者
Martel, Yvan
Merle, Frank
机构
[1] Univ Versailles St Quentin Yvelines, Dept Math, F-78035 Versailles, France
[2] Univ Cergy Pontoise, Dept Math, F-95302 Cergy Pontoise, France
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2006年 / 23卷 / 06期
关键词
nonlinear Schrodinger equations; multi solitary waves; asymptotic behavior;
D O I
10.1016/j.anihpc.2006.01.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the nonlinear Schrodinger equation in R-d for any d >= 1, with a nonlinearity such that solitary waves exist and are stable. Let R-k (t, x) be K arbitrarily given solitary waves of the equation with different speeds nu(1), nu(2),...,nu(K). In this paper, we prove that there exists a solution u(t) of the equation such that lim (t -->+infinity)parallel to u(t) - Sigma(K)(k=1) R-k(t)parallel to(H1) = 0. (C) 2006 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:849 / 864
页数:16
相关论文
共 17 条
[1]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[2]   THE CAUCHY-PROBLEM FOR THE CRITICAL NONLINEAR SCHRODINGER-EQUATION IN HS [J].
CAZENAVE, T ;
WEISSLER, FB .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1990, 14 (10) :807-836
[3]   ORBITAL STABILITY OF STANDING WAVES FOR SOME NON-LINEAR SCHRODING EQUATIONS [J].
CAZENAVE, T ;
LIONS, PL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 85 (04) :549-561
[4]   SYMMETRY AND RELATED PROPERTIES VIA THE MAXIMUM PRINCIPLE [J].
GIDAS, B ;
NI, WM ;
NIRENBERG, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 68 (03) :209-243
[5]   CLASS OF NON-LINEAR SCHRODINGER EQUATIONS .1. CAUCHY-PROBLEM, GENERAL-CASE [J].
GINIBRE, J ;
VELO, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1979, 32 (01) :1-32
[6]  
KWONG MK, 1989, ARCH RATION MECH AN, V105, P243
[7]   Existence of nonstationary bubbles in higher dimensions [J].
Maris, M .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2002, 81 (12) :1207-1239
[8]  
Martel Y, 2005, AM J MATH, V127, P1103
[9]   Asymptotic stability of solitons of the subcritical gKdV equations revisited [J].
Martel, Y ;
Merle, F .
NONLINEARITY, 2005, 18 (01) :55-80
[10]   Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations [J].
Martel, Y ;
Merle, F ;
Tsai, TP .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 231 (02) :347-373