Malmquist-Type Theorems for Cubic Hamiltonians

被引:0
|
作者
Steinmetz, Norbert [1 ]
机构
[1] Tech Univ Dortmund, Fak Math, Beethovenstr 17, D-67360 Lingenfeld, Germany
关键词
Hamiltonian system; Painleve differential equation; Painleve property; Malmquist property; Algebroid function;
D O I
10.1007/s40315-020-00356-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to classify the cubic polynomials H(z,x,y)=(j+k <= 3)Sigma -a(jk)(z)x(j)y(k) over the field of algebraic functions such that the corresponding Hamiltonian system x' = H-y, y' = - H-x has at least one transcendental algebroid solution. Ignoring trivial subcases, the investigations essentially lead to several non-trivial Hamiltonians which are closely related to Painleve's equations P-I, P-II, P-34, and P-IV. Up to normalisation of the leading coefficients, common Hamiltonians are HI : = -2y(3) + 1/2x(2) - zy H-II/34 : x(2)y - 1/2y(2) + 1/2zy +kappa x x(2)y + xy(2) +2zxy+2 kappa x+2 lambda y HIV: 1/3 (x(3)+y(3))+zxy+kappa x+lambda y, but the zoo of non-equivalent Hamiltonians turns out to be much larger.
引用
收藏
页码:43 / 59
页数:17
相关论文
共 50 条