Time-frequency based newborn EEG seizure detection using low and high frequency signatures

被引:33
|
作者
Hassanpour, H [1 ]
Mesbah, M [1 ]
Boashash, B [1 ]
机构
[1] Queensland Univ Technol, Lab Signal Proc Res, Brisbane, Qld 4001, Australia
关键词
EEG seizure detection; spike detection; time-frequency; singular vector;
D O I
10.1088/0967-3334/25/4/012
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The nonstationary and multicomponent nature of newborn EEG seizures tend to increase the complexity of the seizure detection problem. In dealing with this type of problem, time-frequency based techniques were shown to outperform classical techniques. Neonatal EEG seizures have signatures in both low frequency (lower than 10 Hz) and high frequency (higher than 70 Hz) areas. Seizure detection techniques have been proposed that concentrate on either low frequency or high frequency signatures of seizures. They, however, tend to miss seizures that reveal themselves only in one of the frequency areas. To overcome this problem, we propose a detection method that uses time-frequency seizure features extracted from both low and high frequency areas. Results of applying the proposed method on five newborn EEGs are very encouraging.
引用
收藏
页码:935 / 944
页数:10
相关论文
共 50 条
  • [31] Instantaneous frequency based newborn EEG seizure characterisation
    Mostefa Mesbah
    John M. O’ Toole
    Paul B. Colditz
    Boualem Boashash
    EURASIP Journal on Advances in Signal Processing, 2012
  • [32] Epilepsy Detection using Time-Frequency Domain and Entropy Based EEG Analysis
    Ficici, Cansel
    Telatar, Ziya
    Kocak, Onur
    2023 31ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU, 2023,
  • [33] Instantaneous frequency based newborn EEG seizure characterisation
    Mesbah, Mostefa
    O' Toole, John M.
    Colditz, Paul B.
    Boashash, Boualem
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2012,
  • [34] Multiclass Epileptic Seizure Classification Using Time-Frequency Analysis of EEG Signals
    Acharjee, Partha Pratim
    Shahnaz, Celia
    2012 7TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (ICECE), 2012,
  • [35] Neonates' EEG spike detection using a time-frequency approach
    Zarjam, P
    Azemi, G
    Boashash, B
    ISSPA 2005: THE 8TH INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND ITS APPLICATIONS, VOLS 1 AND 2, PROCEEDINGS, 2005, : 183 - 186
  • [36] EEG spike detection using time-frequency signal analysis
    Hassanpour, H
    Mesbah, M
    Boashash, B
    2004 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL V, PROCEEDINGS: DESIGN AND IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS INDUSTRY TECHNOLOGY TRACKS MACHINE LEARNING FOR SIGNAL PROCESSING MULTIMEDIA SIGNAL PROCESSING SIGNAL PROCESSING FOR EDUCATION, 2004, : 421 - 424
  • [37] Deep learning based automatic seizure prediction with EEG time-frequency representation
    Dong, Xingchen
    He, Landi
    Li, Haotian
    Liu, Zhen
    Shang, Wei
    Zhou, Weidong
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 95
  • [38] TIME-FREQUENCY IMAGE DESCRIPTORS-BASED FEATURES FOR EEG EPILEPTIC SEIZURE ACTIVITIES DETECTION AND CLASSIFICATION
    Boubchir, Larbi
    Al-Maadeed, Somaya
    Bouridane, Ahmed
    Cherif, Arab Ali
    2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 867 - 871
  • [39] CLASSIFICATION OF EEG SIGNALS FOR DETECTION OF EPILEPTIC SEIZURE ACTIVITIES BASED ON LBP DESCRIPTOR OF TIME-FREQUENCY IMAGES
    Boubchir, Larbi
    Al-Maadeed, Somaya
    Bouridane, Ahmed
    Cheripf, Arab Ali
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 3758 - 3762
  • [40] Time-frequency distributions of subdural EEG at epileptic seizure onset
    Sun, M
    Scheuer, ML
    Qian, S
    Pon, LS
    Sclabassi, RJ
    PROCEEDINGS OF THE IEEE-SP INTERNATIONAL SYMPOSIUM ON TIME-FREQUENCY AND TIME-SCALE ANALYSIS, 1998, : 73 - 76