Reviews of seismicity around Taiwan: Weibull distribution

被引:2
作者
Wang, J. P. [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Civil & Environm Engn, Hong Kong, Hong Kong, Peoples R China
关键词
Weibull distribution; Earthquake magnitude function; Statistical hypothesis tests; EARTHQUAKE; CALIFORNIA; MAGNITUDE; MODELS; FAULT;
D O I
10.1007/s11069-015-2045-7
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Statistical studies and empirical models play an important role in earthquake research. In this paper, a new statistical study was presented, evaluating if earthquake magnitude probability functions could be modeled by the Weibull distribution that is commonly used in many areas. On the basis of more than 50,000 earthquake data around Taiwan, the statistical analyses show that the hypothesis examined was not rejected by the statistics. That is, the earthquake magnitude probability function around Taiwan could be modeled by the Weibull distribution, with a substantial statistical significance.
引用
收藏
页码:1651 / 1668
页数:18
相关论文
共 50 条
[31]   The generalized inverse Weibull distribution [J].
de Gusmao, Felipe R. S. ;
Ortega, Edwin M. M. ;
Cordeiro, Gauss M. .
STATISTICAL PAPERS, 2011, 52 (03) :591-619
[32]   The Lomax-Weibull Distribution [J].
Gupta, Jaya ;
Garg, Mridula .
ADVANCED SCIENCE LETTERS, 2018, 24 (11) :8126-8129
[33]   A class of Weighted Weibull Distribution [J].
Shahbaz, Saman ;
Shahbaz, Muhammad Qaiser ;
Butt, Nadeem Shafique .
PAKISTAN JOURNAL OF STATISTICS AND OPERATION RESEARCH, 2010, 6 (01) :53-59
[34]   The Gamma Modified Weibull Distribution [J].
Cordeiro, Gauss M. ;
Aristizabal, William D. ;
Suarez, Dora M. ;
Lozano, Sebastien .
CHILEAN JOURNAL OF STATISTICS, 2015, 6 (01) :37-48
[35]   Comparison of estimators of the weibull distribution [J].
Akram M. ;
Hayat A. .
Journal of Statistical Theory and Practice, 2014, 8 (2) :238-259
[36]   The beta modified Weibull distribution [J].
Giovana O. Silva ;
Edwin M. M. Ortega ;
Gauss M. Cordeiro .
Lifetime Data Analysis, 2010, 16 :409-430
[37]   The Weibull-geometric distribution [J].
Souza, Wagner Barreto ;
de Morais, Alice Lemos ;
Cordeiro, Gauss M. .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2011, 81 (05) :645-657
[38]   A new modified Weibull distribution [J].
Almalki, Saad J. ;
Yuan, Jingsong .
RELIABILITY ENGINEERING & SYSTEM SAFETY, 2013, 111 :164-170
[39]   Discrete Linnik Weibull distribution [J].
Jayakumar, K. ;
Sankaran, K. K. .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2019, 48 (10) :3092-3117
[40]   A new flexible Weibull distribution [J].
Park, Sangun ;
Park, Jihwan ;
Choi, Youngsik .
COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2016, 23 (05) :399-409