The power structure of 2-generator 2-groups

被引:0
作者
Kluempen, FL [1 ]
机构
[1] SUNY Binghamton, Dept Math Sci, Binghamton, NY 13902 USA
关键词
nilpotency class two; 2-group; power structure; regularity;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In 1934, Hall introduced regular p-groups. Any regular 2-group is abelian. A regular p-group is power closed, exponent closed, strongly semi-p-abelian, and an exact power margin group. The study of these properties and relationships among them constitutes the investigation of the power structure of a p-group. In this paper, we classify 2-generator 2-groups of nilpotency class two according to their power structure.
引用
收藏
页码:287 / 302
页数:16
相关论文
共 9 条
[1]  
Hall P, 1940, J REINE ANGEW MATH, V182, P156
[2]  
HALL P, 1933, P LOND MATH SOC, V36, P29, DOI 10.1112/plms/s2-36.1.29
[3]   NEARLY REGULAR P-GROUPS [J].
HOBBY, CR .
CANADIAN JOURNAL OF MATHEMATICS, 1967, 19 (03) :520-&
[4]   ON POWER MARGINS [J].
KAPPE, LC .
JOURNAL OF ALGEBRA, 1989, 122 (02) :337-344
[5]   Two-generator two-groups of class two and their nonabelian tensor squares [J].
Kappe, LC ;
Visscher, MP ;
Sarmin, NH .
GLASGOW MATHEMATICAL JOURNAL, 1999, 41 :417-430
[6]  
KAPPE LC, 1992, REND SEM MAT U PADOV, V87, P246
[7]   POWER-STRUCTURE OF P-GROUPS .1. [J].
MANN, A .
JOURNAL OF ALGEBRA, 1976, 42 (01) :121-135
[8]   THE POWER-STRUCTURE OF FINITE P-GROUPS [J].
XU, MY .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1987, 36 (01) :1-10
[9]  
XU MY, 1980, ACTA MATH SINICA, V23, P78