A PROPERTY OF THE DEFINING EQUATIONS FOR THE LIE ALGEBRA IN THE GROUP CLASSIFICATION PROBLEM FOR WAVE EQUATIONS

被引:2
作者
Khabirov, S. V. [1 ]
机构
[1] Russian Acad Sci, Inst Mech, Ufa Sci Ctr, Ufa 450001, Russia
关键词
symmetries of differential equations; group classification; defining equations of the admissible Lie algebra;
D O I
10.1007/s11202-009-0058-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We solve the group classification problem for nonlinear hyperbolic systems of differential equations. The admissible continuous group of transformations has the Lie algebra of dimension less than 5. This main statement follows from the principal property of the defining equations of the admissible Lie algebra: the commutator of two solutions is a solution. Using equivalence transformations we classify nonlinear systems in accordance with the well-known Lie algebra structures of dimension 3 and 4.
引用
收藏
页码:515 / 532
页数:18
相关论文
共 50 条
[21]   Group classification of variable coefficient generalized Kawahara equations [J].
Kuriksha, Oksana ;
Posta, Severin ;
Vaneeva, Olena .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (04)
[22]   Group classification of a class of equations arising in financial mathematics [J].
Ivanova, N. M. ;
Sophocleous, C. ;
Leach, P. G. L. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 372 (01) :273-286
[23]   Group classification of quasilinear elliptic-type equations. II. Invariance under solvable Lie algebras [J].
Lahno V.I. ;
Spichak S.V. .
Ukrainian Mathematical Journal, 2011, 63 (2) :236-253
[24]   Lie Reduction and Conditional Symmetries of Some Variable Coefficient Nonlinear Wave Equations [J].
Huang Ding-Jiang ;
Zhou Shui-Geng ;
Mei Jian-Qin ;
Zhang Hong-Qing .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2010, 53 (01) :1-5
[25]   On a Lie Group Characterization of Quasi-local Symmetries of Nonlinear Evolution Equations [J].
Zhdanov, Renat .
JOURNAL OF LIE THEORY, 2010, 20 (02) :375-392
[26]   Group classification of a family of second-order differential equations [J].
Ndogmo, J. C. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 364 (01) :242-254
[27]   Group classification of dynamics equations of self-gravitating gas [J].
Adarchenko, V. A. ;
Panov, A., V ;
Voronin, S. M. ;
Klebanov, I. I. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 77 :18-24
[28]   Enhanced preliminary group classification of a class of generalized diffusion equations [J].
Cardoso-Bihlo, Elsa Dos Santos ;
Bihlo, Alexander ;
Popovych, Roman O. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (09) :3622-3638
[29]   Group classification of dynamics equations of self-gravitating gas [J].
Adarchenko, V. A. ;
Panov, A. V. ;
Voronin, S. M. ;
Klebanov, I. I. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 76 (109-115) :109-115
[30]   Group properties of generalized quasi-linear wave equations [J].
Huang, Ding-jiang ;
Zhou, Shuigeng .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 366 (02) :460-472