Structural and topological phase transitions induced by strain in two-dimensional bismuth

被引:4
作者
Lima, Erika N. [1 ]
Schmidt, Tome M. [2 ]
Nunes, R. W. [3 ]
机构
[1] Univ Fed Mato Grosso, Dept Matemat, Rondonopolis, MG, Brazil
[2] Univ Fed Uberlandia, Inst Fis, BR-38400902 Uberlandia, MG, Brazil
[3] Univ Fed Minas Gerais, Dept Fis, ICEx, BR-31270901 Belo Horizonte, MG, Brazil
关键词
topological insulator; topological phase transition; 2D bismuth; ab initio calculations; density functional theory; structural phase transition; EXTENDED DEFECT; INSULATOR; GRAPHENE; STATES;
D O I
10.1088/1361-648X/ab3899
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We employ first-principles density-functional calculations to study structural and topological electronic transitions in two-dimensional bismuth layers. Our calculations reveal that a free-standing hexagonal bismuthene phase (the most stable one in the absence of strain) should become thermodinamically unstable against transformation to a putative 'pentaoctite' phase (composed entirely of pentagonal and octagonal rings), under biaxial tensile strain. Moreover, our results indicate that 2D bismuth layers in the pentaoctite phase should undergo a topological electronic phase transition under either a biaxial or uniaxial tensile strain. More specifically, at its equilibrium lattice parameters the pentaoctite lattice is a topologically trivial system with a direct band gap. Strain-induced parity inversion of valence and conduction bands is obtained, and the pentaoctite structure undergoes a transition to a topological-insulator phase at a biaxial tensile strain of 5%. In the case of uniaxial tensile strains, the topological transition happens at a tensile strain of 6% along the armchair direction of the pentaoctite lattice, and at a 5% tensile strain in the zigzag direction. Our study indicates that 2D bismuth layers may prove themselves a rich platform to realize topologically non-trivial 2D materials upon strain engineering.
引用
收藏
页数:7
相关论文
共 39 条
[1]   Magnetic states of linear defects in graphene monolayers: Effects of strain and interaction [J].
Alexandre, Simone S. ;
Nunes, R. W. .
PHYSICAL REVIEW B, 2017, 96 (07)
[2]   Correlated Magnetic States in Extended One-Dimensional Defects in Graphene [J].
Alexandre, Simone S. ;
Lucio, A. D. ;
Castro Neto, A. H. ;
Nunes, R. W. .
NANO LETTERS, 2012, 12 (10) :5097-5102
[3]   Complex evolution of the electronic structure from polycrystalline to monocrystalline graphene: Generation of a new Dirac point [J].
Araujo, Joice da Silva ;
Nunes, R. W. .
PHYSICAL REVIEW B, 2010, 81 (07)
[4]   Weyl and Dirac semimetals in three-dimensional solids [J].
Armitage, N. P. ;
Mele, E. J. ;
Vishwanath, Ashvin .
REVIEWS OF MODERN PHYSICS, 2018, 90 (01)
[5]   Quantum spin Hall effect and topological phase transition in HgTe quantum wells [J].
Bernevig, B. Andrei ;
Hughes, Taylor L. ;
Zhang, Shou-Cheng .
SCIENCE, 2006, 314 (5806) :1757-1761
[6]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[7]   Dislocations in graphene [J].
Carpio, Ana ;
Bonilla, Luis L. ;
de Juan, Fernando ;
Vozmediano, Maria A. H. .
NEW JOURNAL OF PHYSICS, 2008, 10
[8]   Bulk Band Gap and Surface State Conduction Observed in Voltage-Tuned Crystals of the Topological Insulator Bi2Se3 [J].
Checkelsky, J. G. ;
Hor, Y. S. ;
Cava, R. J. ;
Ong, N. P. .
PHYSICAL REVIEW LETTERS, 2011, 106 (19)
[9]   Gate-Voltage Control of Chemical Potential and Weak Antilocalization in Bi2Se3 [J].
Chen, J. ;
Qin, H. J. ;
Yang, F. ;
Liu, J. ;
Guan, T. ;
Qu, F. M. ;
Zhang, G. H. ;
Shi, J. R. ;
Xie, X. C. ;
Yang, C. L. ;
Wu, K. H. ;
Li, Y. Q. ;
Lu, L. .
PHYSICAL REVIEW LETTERS, 2010, 105 (17)
[10]   Controlled growth of a line defect in graphene and implications for gate-tunable valley filtering [J].
Chen, J. -H. ;
Autes, G. ;
Alem, N. ;
Gargiulo, F. ;
Gautam, A. ;
Linck, M. ;
Kisielowski, C. ;
Yazyev, O. V. ;
Louie, S. G. ;
Zettl, A. .
PHYSICAL REVIEW B, 2014, 89 (12)