Classifying orders in the Sklyanin algebra

被引:6
作者
Rogalski, Daniel [1 ]
Sierra, Susan J. [2 ]
Stafford, J. Toby [3 ]
机构
[1] Univ Calif San Diego, Dept Math, 9500 Gilman Dr 0112, La Jolla, CA 92093 USA
[2] Univ Edinburgh, Sch Math, James Clerk Maxwell Bldg,Peter Guthrie Tait Rd, Edinburgh EH9 3FD, Midlothian, Scotland
[3] Univ Manchester, Sch Math, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
noncommutative projective geometry; noncommutative surfaces; Sklyanin algebras; noetherian graded rings; noncommutative blowing-up; PROJECTIVE SURFACES; RINGS; MODULES; SCHEMES; CURVES;
D O I
10.2140/ant.2015.9.2055
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let S denote the 3-dimensional Sklyanin algebra over an algebraically closed field k and assume that S is not a finite module over its centre. (This algebra corresponds to a generic noncommutative P-2.) Let A = circle plus(i >= 0) A(i) be any connected graded k-algebra that is contained in and has the same quotient ring as a Veronese ring S-(3n). Then we give a reasonably complete description of the structure of A. This is most satisfactory when A is a maximal order, in which case we prove, subject to a minor technical condition, that A is a noncommutative blowup of S-(3n) at a (possibly noneffective) divisor on the associated elliptic curve E. It follows that A has surprisingly pleasant properties; for example, it is automatically noetherian, indeed strongly noetherian, and has a dualising complex.
引用
收藏
页码:2055 / 2119
页数:65
相关论文
共 32 条
[1]   TWISTED HOMOGENEOUS COORDINATE RINGS [J].
ARTIN, M ;
VANDENBERGH, M .
JOURNAL OF ALGEBRA, 1990, 133 (02) :249-271
[2]   MODULES OVER REGULAR ALGEBRAS OF DIMENSION-3 [J].
ARTIN, M ;
TATE, J ;
VANDENBERGH, M .
INVENTIONES MATHEMATICAE, 1991, 106 (02) :335-388
[3]   NONCOMMUTATIVE GRADED DOMAINS WITH QUADRATIC GROWTH [J].
ARTIN, M ;
STAFFORD, JT .
INVENTIONES MATHEMATICAE, 1995, 122 (02) :231-276
[4]   NONCOMMUTATIVE PROJECTIVE SCHEMES [J].
ARTIN, M ;
ZHANG, JJ .
ADVANCES IN MATHEMATICS, 1994, 109 (02) :228-287
[5]   Generic flatness for strongly noetherian algebras [J].
Artin, M ;
Small, LW ;
Zhang, JJ .
JOURNAL OF ALGEBRA, 1999, 221 (02) :579-610
[6]  
Artin M., 1997, REPRESENTATION THEOR, V238, P1
[7]  
Artin M., 1990, The Grothendieck Festschrift, VI, P33
[8]  
BJORK JE, 1990, PROG MATH, V92, P425
[9]  
COZZENS JH, 1976, T AM MATH SOC, V219, P323
[10]   Noncommutative del Pezzo surfaces and Calabi-Yau algebras [J].
Etingof, Pavel ;
Ginzburg, Victor .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2010, 12 (06) :1371-1416