A machine learning approach towards the prediction of protein-ligand binding affinity based on fundamental molecular properties

被引:35
|
作者
Kundu, Indra [1 ]
Paul, Goutam [2 ]
Banerjee, Raja [3 ]
机构
[1] Maulana Abul Kalam Azad Univ Technol, Dept Bioinformat, Kolkata, India
[2] Indian Stat Inst, Kolkata, India
[3] Maulana Abul Kalam Azad Univ Technol, Kolkata, India
关键词
PDBBIND DATABASE; PRINCIPLES; DOCKING; RECOGNITION; MOTIONS;
D O I
10.1039/c8ra00003d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
There is an exigency of transformation of the enormous amount of biological data available in various forms into some significant knowledge. We have tried to implement Machine Learning (ML) algorithm models on the protein-ligand binding affinity data already available to predict the binding affinity of the unknown. ML methods are appreciably faster and cheaper as compared to traditional experimental methods or computational scoring approaches. The prerequisites of this prediction are sufficient and unbiased features of training data and a prediction model which can fit the data well. In our study, we have applied Random forest and Gaussian process regression algorithms from the Weka package on protein-ligand binding affinity, which encompasses protein and ligand binding information from PdbBind database. The models are trained on the basis of selective fundamental information of both proteins and ligand, which can be effortlessly fetched from online databases or can be calculated with the availability of structure. The assessment of the models was made on the basis of correlation coefficient (R-2) and root mean square error (RMSE). The Random forest model gave R-2 and RMSE of 0.76 and 1.31 respectively. We have also used our features and prediction models on the dataset used by others and found that our model with our features outperformed the existing ones.
引用
收藏
页码:12127 / 12137
页数:11
相关论文
共 50 条
  • [31] Development and evaluation of a deep learning model for protein-ligand binding affinity prediction
    Stepniewska-Dziubinska, Marta M.
    Zielenkiewicz, Piotr
    Siedlecki, Pawel
    BIOINFORMATICS, 2018, 34 (21) : 3666 - 3674
  • [32] Improving the prediction of protein-ligand binding affinity using deep learning models
    Rezaei, Mohammad
    Li, Yanjun
    Li, Xiaolin
    Li, Chenglong
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [33] CAPLA: improved prediction of protein-ligand binding affinity by a deep learning approach based on a cross-attention mechanism
    Jin, Zhi
    Wu, Tingfang
    Chen, Taoning
    Pan, Deng
    Wang, Xuejiao
    Xie, Jingxin
    Quan, Lijun
    Lyu, Qiang
    BIOINFORMATICS, 2023, 39 (02)
  • [34] A Comparative Assessment of Ranking Accuracies of Conventional and Machine-Learning-Based Scoring Functions for Protein-Ligand Binding Affinity Prediction
    Ashtawy, Hossam M.
    Mahapatra, Nihar R.
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2012, 9 (05) : 1301 - 1313
  • [35] A Comparative Assessment of Predictive Accuracies of Conventional and Machine Learning Scoring Functions for Protein-Ligand Binding Affinity Prediction
    Ashtawy, Hossam M.
    Mahapatra, Nihar R.
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2015, 12 (02) : 335 - 347
  • [36] Structure-based protein-ligand interaction fingerprints for binding affinity prediction
    Wang, Debby D.
    Chan, Moon-Tong
    Yan, Hong
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 6291 - 6300
  • [37] Binding Affinity Prediction for Protein-Ligand Complexes Based on β Contacts and B Factor
    Liu, Qian
    Kwoh, Chee Keong
    Li, Jinyan
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2013, 53 (11) : 3076 - 3085
  • [38] Exploring protein-ligand binding affinity prediction with electron density-based geometric deep learning
    Isert, Clemens
    Atz, Kenneth
    Riniker, Sereina
    Schneider, Gisbert
    RSC ADVANCES, 2024, 14 (07) : 4492 - 4502
  • [39] Protein-ligand binding affinity prediction model based on graph attention network
    Yuan, Hong
    Huang, Jing
    Li, Jin
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2021, 18 (06) : 9148 - 9162
  • [40] Effects of data quality and quantity on deep learning for protein-ligand binding affinity prediction
    Fan, Frankie J.
    Shi, Yun
    BIOORGANIC & MEDICINAL CHEMISTRY, 2022, 72